Skip to main content
Log in

Prunin is a highly potent flavonoid from Prunus davidiana stems that inhibits protein tyrosine phosphatase 1B and stimulates glucose uptake in insulin-resistant HepG2 cells

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Prunin is the main flavonoid in Prunus davidiana stems and improves hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats. The aim of this study was to investigate the in vitro anti-diabetic potential of prunin via the inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, peroxynitrite (ONOO)-mediated tyrosine nitration, and stimulation of glucose uptake in insulin-resistant hepatocytes. In addition, a molecular docking simulation was performed to predict specific prunin binding modes during PTP1B inhibition. Prunin showed strong inhibitory activity against PTP1B, with an IC50 value of 5.5 ± 0.29 µM, and significant inhibitory activity against α-glucosidase, with an IC50 value of 317 ± 2.12 µM. Moreover, a kinetics study revealed that prunin inhibited PTP1B (K i = 8.66) and α-glucosidase (K i = 189.56) with characteristics typical of competitive and mixed type inhibitors, respectively. Docking simulations showed that prunin selectively inhibited PTP1B by targeting its active site and exhibited good binding affinity, with a docking score of −9 kcal/mol. Furthermore, prunin exhibited dose-dependent inhibitory activity against ONOO-mediated tyrosine nitration and stimulated glucose uptake by decreasing PTP1B expression level in insulin-resistant HepG2 cells. These results indicate that prunin has significant potential as a selective PTP1B inhibitor and may possess anti-diabetic properties by improving insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aulak KS, Miyagi M, Yan L, West KA, Massillon D, Crabb JW, Stuehr DJ (2001) Proteomic method identifies proteins nitrated during inflammatory challenge. Proc Natl Acad Sci USA 98:12056–12061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron AD (1998) Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res Clin Pract 40:51–55

    Article  Google Scholar 

  • Bialy L, Waldmann H (2005) Inhibitors of protein tyrosine phosphatases: next-generation drugs. Angew Chem 44:3814–3839

    Article  CAS  Google Scholar 

  • Ceriello A, Mercuri F, Quagliaro L, Assaloni R, Motz E, Tonutti L, Tabaga C (2001) Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress. Diabetologia 44:834–838

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Quagliaro L, Catone B, Pascon R, Piazzola M, Bais B, Marra G, Tonutti L, Taboga C, Motz E (2002) Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 25:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Yokozawa T, Oura H (1991a) Improvement of hyperglycemia and hyperlipemia in streptozotocin-diabetic rats by a methanolic extract of Prunus davidiana stems and its main component, prunin. Plant Med 57:208–211

    Article  CAS  Google Scholar 

  • Choi JS, Yokozawa T, Oura H (1991b) Antihyperlipidemic effect of flavonoids from Prunus davidiana. J Nat Prod 54:218–224

    Article  CAS  PubMed  Google Scholar 

  • Choi JS, Islam MN, Ali MY, Kim YM, Park HJ, Sohn HS, Jung HA (2014) The effects of C-glycosylation of luteolin on its antioxidant, anti-Alzheimer’s disease, anti-diabetic, and anti-inflammatory activities. Arch Pharm Res 37:1354–1363

    Article  CAS  PubMed  Google Scholar 

  • Chudnovskiy R, Thompson A, Tharp K, Hellerstein M, Napoli JL, Stahl A (2014) Consumption of clarified grapefruit juice ameliorates high-fat diet induced insulin resistance and weight gain in mice. PLoS ONE 9:e108408

    Article  PubMed  PubMed Central  Google Scholar 

  • Combs AP (2010) Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem 53:2333–2344

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Na MK, Oh H, Bae EY, Jeong DG, Ryu SE, Kim S, Kim BY, Oha WK, Ahn JS (2006) Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorg Med Chem Lett 16:1426–1429

    Article  CAS  PubMed  Google Scholar 

  • Egawa K, Maegawa H, Shimizu S, Morino K, Nishio Y, Bryer-Ash M, Cheung AT, Kolls JK, Kikkawa R, Kashiwagi A (2001) Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in L6 myocytes and Fao hepatoma cells. J Biol Chem 276:10207–10211

    Article  CAS  PubMed  Google Scholar 

  • Forsell PK, Boie Y, Montalibet J, Collins S, Kennedy BP (2000) Genomic characterization of the human and mouse protein tyrosine phosphatase-1B genes. Gene 260:145–153

    Article  CAS  PubMed  Google Scholar 

  • Guo ZH, Niu XL, Xiao T, Lu JJ, Li W, Zhao YQ (2015) Chemical profile and inhibition of α-glycosidase and protein tyrosine phosphatase 1B (PTP1B) activities by flavonoids from licorice (Glycyrrhiza uralensis Fisch). J Funct Foods 14:324–336

    Article  CAS  Google Scholar 

  • Han X, Pan J, Ren D, Cheng Y, Fan P, Lou H (2008a) Naringenin-7-O-glucoside protects against doxorubicin-induced toxicity in H9c2 cardiomyocytes by induction of endogenous antioxidant enzymes. Food Chem Toxicol 46:3140–3146

    Article  CAS  PubMed  Google Scholar 

  • Han X, Ren D, Fan P, Shen T, Lou H (2008b) Protective effects of naringenin-7-O-glucoside on doxorubicin-induced apoptosis in H9C2 cells. Eur J Pharmacol 581:47–53

    Article  CAS  PubMed  Google Scholar 

  • Han X, Gao S, Cheng Y, Sun Y, Liu W, Tang L, Ren D (2012) Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 ardiomyocytes. Biosci Trends 6:19–25

    CAS  PubMed  Google Scholar 

  • Hollman PCH, Bijsman MNCP, Van Gameren BY, Cnossen EPJ, De Vries JHM, Katan MB (1999) The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic Res 31:569–573

    Article  CAS  PubMed  Google Scholar 

  • Jiang CS, Liang LF, Guo YW (2012) Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol Sin 33:1217–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TO, Ermolieff J, Jirousek MR (2002) Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov 1:696–709

    Article  CAS  PubMed  Google Scholar 

  • Jung HA, Jung MJ, Kim JY, Chung HY, Choi JS (2003) Inhibitory activity of flavonoids from Prunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Arch Pharm Res 26:809–815

    Article  CAS  PubMed  Google Scholar 

  • Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB (2000) Increased energy expenditure, decreased adiposity, and tissue specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 20:5479–5489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS (2015) Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 115:4719–4743

    Article  CAS  PubMed  Google Scholar 

  • Li T, Zhang XD, Song YW, Liu JW (2005) A microplate-based screening method for α-glucosidase inhibitors. Chin J Clin Pharmacol Ther 10:1128–1134

    Google Scholar 

  • Li W, Li SP, Higai K, Sasaki T, Asada Y, Ohshima S, Koike K (2013) Evaluation of licorice flavonoids as protein tyrosine phosphatase 1B inhibitors. Bioorg Med Chem Lett 23:5836–5839

    Article  CAS  PubMed  Google Scholar 

  • Liu ZQ, Liu T, Chen C, Li MY, Wang ZY, Chen RS, Wei GX, Wang XY, Luo DQ (2015) Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effect in diabetic KKAy mice. Toxicol Appl Pharmacol 285:61–70

    Article  CAS  PubMed  Google Scholar 

  • Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP (2013) The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem 141:2170–2176

    Article  CAS  PubMed  Google Scholar 

  • Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D (2001) Acute hyperglycemia induces an oxidative stress in healthy subjects (Letter). J Clin Investig 108:635–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris DL, Rui L (2009) Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab 297:1247–1259

    Article  Google Scholar 

  • Nguyen PH, Sharma G, Dao TT, Uddin MN, Kang KW, Ndinteh DT, Mbafor JT, Oh WK (2012) New prenylated isoflavonoids as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Erythrina addisoniae. Bioorg Med Chem 20:6459–6464

    Article  CAS  PubMed  Google Scholar 

  • Pantidos N, Boath A, Lund V, Conner S, McDougall GJ (2014) Phenolic-rich extracts from the edible seaweed, Ascophyllum nodosum, inhibit α-amylase and α-glucosidase: potential anti-hyperglycemic effects. J Funct Foods 10:201–209

    Article  CAS  Google Scholar 

  • Petersen KF, Shulman GI (2006) Etiology of insulin resistance. Am J Med 119:10–16

    Article  Google Scholar 

  • Popov D (2011) Novel protein tyrosine phosphatase 1B inhibitors: interaction requirements for improved intracellular efficacy in type 2 diabetes mellitus and obesity control. Biochem Biophys Res Commun 410:377–381

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy KR, Aderogba MA, Amoo SO, Stirk WA, Staden JV (2013) Potential antiradical and alpha-glucosidase inhibitors from Ecklonia maxima (Osbeck) Papenfuss. Food Chem 141:1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Roshchin YV, Gerashchenko GI (1973) Anti-inflammatory activity of some flavonoids. Vopr Farm Dal’nem Vostoke 1:135

    Google Scholar 

  • Sasaki T, Li W, Tran HQ, Kim YH, Koike K (2014) Protein tyrosine phosphatase 1B inhibitory activity of lavandulyl flavonoids from roots of Sophora flavescent. Planta Med 80:557–560

    Article  CAS  PubMed  Google Scholar 

  • Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Investig 118:2992–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepankiewicz BG, Liu G, Hajduk PJ, Abad-Zapatero C, Pei Z, Xin Z, Lubben TH, Trevillyan JM, Stashko MA, Ballaron SJ, Liang H, Huang F, Hutchins CW, Fesik SW, Jirousek MR (2003) Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J Am Chem Soc 125:4087–4096

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang LJ, Jiang B, Wu N, Wang SY, Shi DY (2015) Natural and semisynthetic protein tyrosine phosphatase 1B (PTP1B) inhibitors as anti-diabetic agents. RSC Adv 5:48822–48834

    Article  CAS  Google Scholar 

  • Watson RT, Pessin JE (2006) Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem Sci 31:215–222

    Article  CAS  PubMed  Google Scholar 

  • Yao LH, Jiang YM, Shi J, Tomas-Barberan FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122

    Article  CAS  PubMed  Google Scholar 

  • Yousuf S, Sudha N, Murugesan G, Enoch IVMV (2013) Isolation of prunin from the fruit shell of Bixa orellana and the effect of β-cyclodextrin on its binding with calf thymus DNA. Carbohydr Res 365:46–51

    Article  CAS  PubMed  Google Scholar 

  • Zabolotny JM, Haj FG, Kim YB, Kim HJ, Shulman GI, Kim JK, Neel BG, Kahn BB (2004) Transgenic overexpression of protein tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem 279:24844–24851

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Liu W, Hu T, Du L, Luo C, Chen K, Shen X, Jiang H (2008) Structural basis for catalytic and inhibitory mechanisms of β-hydroxyacyl-acyl carrier protein dehydratase (FabZ). J Biol Chem 283:5370–5379

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sue Choi.

Ethics declarations

Conflict of interests

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.A., Ali, M.Y., Bhakta, H.K. et al. Prunin is a highly potent flavonoid from Prunus davidiana stems that inhibits protein tyrosine phosphatase 1B and stimulates glucose uptake in insulin-resistant HepG2 cells. Arch. Pharm. Res. 40, 37–48 (2017). https://doi.org/10.1007/s12272-016-0852-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-016-0852-3

Keywords

Navigation