Skip to main content
Log in

Measuring levels of biogenic amines and their metabolites in rat brain tissue using high-performance liquid chromatography with photodiode array detection

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We developed a method to detect biogenic amines and their metabolites in rat brain tissue using simultaneous high-performance liquid chromatography and a photodiode array detection. Measurements were made using a Hypersil Gold C-18 column (250 × 2.1 mm, 5 µm). The mobile phase was 5 mM perchloric acid containing 5 % acetonitrile. The correlation coefficient was 0.99950.9999. LODs (S/= 3) and LOQs (S/= 10) were as follows: dopamine 0.4 and 1.3 pg, 3, 4-dihydroxyphenylacetic acid 8.4 and 28.0 pg, serotonin 0.4 and 1.3 pg, 5-hydroxyindolacetic acid 3.4 and 11.3 pg, and homovanillic acid 8.4 and 28.0 pg. This method does not require derivatization steps, and is more sensitive than the widely used HPLC–UV method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeling, N.G., A.H.V. Gennip, H. Overmars, and P.A. Voute. 1984. Simultaneous determination of catecholamines and metanephrines in urine by HPLC with fluorometric detection. Clinica Chimica Acta 137(2): 211–226.

    Article  CAS  Google Scholar 

  • Ardis, T.C., M. Cahir, J.J. Elliott, R. Bell, G.P. Reynolds, and S.J. Cooper. 2009. Effect of acute tryptophan depletion on noradrenaline and dopamine in the rat brain. Journal of Psychopharmacology 23(1): 51–55.

    Article  PubMed  CAS  Google Scholar 

  • Cannazza, G., A. Di Stefano, B. Mosciatti, D. Braghiroli, M. Baraldi, F. Pinnen, P. Sozio, C. Benatti, and C. Parenti. 2005. Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of L-DOPA prodrugs by mean of HPLC-EC. Journal of Pharmaceutical and Biomedical Analysis 36(5): 1079–1084.

    Article  PubMed  CAS  Google Scholar 

  • Carrera, V., E. Sabater, E. Vilanova, and M.A. Sogorb. 2007. A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxy tryptamine: Application to the secretion of bovine chromaffin cell cultures. Journal of Chromatography B 847: 88–94.

    Article  CAS  Google Scholar 

  • Chen, J., Y.P. Shi, and J.Y. Liu. 2003. Determination of noradrenaline and dopamine in Chinese herbal extracts from Portulaca oleracea L. by high-performance liquid chromatography. Journal of Chromatography A 1003: 127–132.

    Article  PubMed  CAS  Google Scholar 

  • Fujino, K., T. Yoshitake, J. Kehr, H. Nohta, and M. Yamaguchi. 2003. Simultaneous determination of 5-hydroxyindoles and catechols by high-performance liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine. Journal of Chromatography A 1012(2): 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Karimi, M., J.L. Carl, S. Loftin, and J.S. Perlmutter. 2006. Modified high-performance liquid chromatography with electrochemical detection method for plasma measurement of levodopa, 3-O-methyldopa, dopamine, carbidopa and 3,4-dihydroxyphenyl acetic acid. Journal of Chromatography B 836: 120–123.

    Article  CAS  Google Scholar 

  • Liu, L., Q. Li, N. Li, J. Ling, R. Liu, Y. Wang, L. Sun, X.H. Chen, and K. Bi. 2011. Simultaneous determination of catecholamines and their metabolites related to Alzheimer’s disease in human urine. Journal of Separation Science 34(10): 1198–1204.

    Article  PubMed  CAS  Google Scholar 

  • Moir, A.T.B., G.W. Ashcroft, T.B.B. Crawford, D. Eccleston, and H.C. Guldberg. 1970. Cerebral metabolites in cerebrospinal fluid as a biochemical approach to the brain. Brain 93: 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Murai, S., H. Saito, Y. Masuda, and T. Itoh. 1988. Rapid determination of norepinephrine, dopamine, serotonin, their precursor amino acids, and related metabolites in discrete brain areas of mice within ten minutes by HPLC with electrochemical detection. Journal of Neurochemistry 50(2): 473–479.

    Article  PubMed  CAS  Google Scholar 

  • Musso, N.R., C. Vergassola, A. Pende, and G. Lotti. 1989. Reversed-phase HPLC separation of plasma norepinephrine, epinephrine, and dopamine, with three-electrode coulometric detection. Clinical Chemistry 35(9): 1975–1977.

    PubMed  CAS  Google Scholar 

  • Muthian, G., V. Mackey, J. King, and C.G. Charlton. 2010. Modeling a sensitization stage and a precipitation stage for parkinson’s disease using prenatal and postnatal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Neuroscience 169(3): 1085–1093.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nguyen, A.T., T. Aerts, D. Van Dam, and P.P. De Deyn. 2010. Biogenic amines and their metabolites in mouse brain tissue: Development, optimization and validation of an analytical HPLC method. Journal of Chromatography B 878: 3003–3014.

    Article  CAS  Google Scholar 

  • Oliveira, C.H., R.E. Barrientos-Astigarraga, M. Sucupira, G.S. Graudenz, M.N. Muscará, and G.D. Nucci. 2002. Quantification of methyldopa in human plasma by high-performance liquid chromatography-electrospray tandem mass spectrometry: Application to a bioequivalence study. Journal of Chromatography B 768: 341–348.

    Article  CAS  Google Scholar 

  • Rondelli, I., D. Acerbi, F. Mariotti, and P. Ventura. 1994. Simultaneous determination of levodopa methyl ester, 3-O-methyldopa and dopamine in plasma by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography B 653: 17–23.

    Article  CAS  Google Scholar 

  • Roth, B.L., D.L. Willins, K. Kristiansen, and W.K. Kroeze. 1998. 5-Hydroxytryptamine2-family receptors (5-hydroxytryptamine2A, 5-hydroxytryptamine2B, 5-hydroxytryptamine2C): where structure meets function. Pharmacology & Therapeutics 79(3): 231–257.

    Article  CAS  Google Scholar 

  • Satoh, K., R. Nonaka, N. Ohashi, M. Shimizu, S. Oshio, and K. Takeda. 2008. The effects of in Utero exposure to a migrant, 4,4′-butylidenebis(6-t-butyl-m-cresol), from nitrile-butadiene rubber gloves on monoamine neurotransmitter in rats. Biological and Pharmaceutical Bulletin 31(12): 2211–2215.

    Article  CAS  Google Scholar 

  • Saxer, C., M. Niina, A. Nakashima, Y. Nagae, and N. Masuda. 2004. Simultaneous determination of levodopa and 3-O-methyldopa in human plasma by liquid chromatography with electrochemical detection. Journal of Chromatography B 802: 299–305.

    Article  CAS  Google Scholar 

  • Swiercz, R., Z. Grzelinska, S. Gralewicz, and W. Wasowicz. 2009. Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride. International Journal of Occupational Medicine and Environmental Health 22(2): 107–113.

    Article  PubMed  Google Scholar 

  • Syslová, K., L. Rambousek, M. Kuzma, V. Najmanová, V. Bubeníková-Valešová, R. Šlamberová, and P. Kačer. 2011. Monitoring of dopamine and its metabolites in brain microdialysates: Method combining freeze-drying with liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1218: 3382–3391.

    Article  PubMed  Google Scholar 

  • Törnkvist, A., P.J.R. Sjöberg, K.E. Markides, and J. Bergquist. 2004. Analysis of catecholamines and related substances using porous graphitic carbon as separation media in liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 801: 323–329.

    Article  Google Scholar 

  • Young, S.N. 2007. How to increase serotonin in the human brain without drugs. Journal of Psychiatry and Neuroscience 32(6): 394–399.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, H., Y. Zhang, and Z. Yuan. 2001. Electrochemical determination of dopamine using a poly (2-picolinic acid) modified glassy carbon electrode. Analyst 126(3): 358–360.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Basic Science Research Program through a grant funded by the National Research Foundation of Korea (NRF), which is supported by the Korean government (MEST) (NRF-2012R1A1B3003074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon-Pyo Hong.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Min-Jung Gu and Ji-Hyun Jeon have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, MJ., Jeon, JH., Oh, M.S. et al. Measuring levels of biogenic amines and their metabolites in rat brain tissue using high-performance liquid chromatography with photodiode array detection. Arch. Pharm. Res. 39, 59–65 (2016). https://doi.org/10.1007/s12272-015-0661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0661-0

Keywords

Navigation