Skip to main content
Log in

Cornin increases angiogenesis and improves functional recovery after stroke via the Ang1/Tie2 axis and the Wnt/β-catenin pathway

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We investigated whether cornin, an iridoid glycoside isolated from fruits of Verbena officinalis L., regulated angiogenesis and thereby improved functional outcomes after stroke and discovered a potential mechanism. The effects of cornin on proliferation of rat artery smooth muscle cell (RASMC) and signalling was investigated in vitro. Adult male rats were subjected to 1 h of middle cerebral artery occlusion (MCAO) and reperfusion and treated with or without 25 mg/kg of cornin, starting 24 h after ischemia and reperfusion, by continuous intravenous injection daily for 14 days. Neurological functional tests were performed and cerebral Evans blue extravasation was measured. Angiogenesis and angiogenic factor expressions were measured by immunohistochemistry and Western blotting, respectively. Cornin increased the proliferation of RASMC and enhanced the expression of Wnt5a, β-catenin, cyclin D1 and angiopoietin-1 (Ang1). Cornin treatment promoted angiogenesis in the ischemic brain core and improved functional outcomes after stroke. Cornin-treated MCAO rats showed significant increase in vascularization and expression of vascular endothelial growth factor and Ang1 and phosphorylation of Tie2 and Akt compared with vehicle-treated MCAO rats. The Ang1/Tie2 axis and Wnt/β-catenin pathways appear to mediate cornin-induced angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bonita, R., S. Mendis, T. Truelsen, J. Bogousslavsky, J. Toole, and F. Yatsu. 2004. The global stroke initiative. Lancet Neurology 3(7): 391–393.

    Article  PubMed  Google Scholar 

  • Chen, J., X. Cui, A. Zacharek, and M. Chopp. 2009. Increasing Ang1/Tie2 expression by simvastatin treatment induces vascular stabilization and neuroblast migration after stroke. Journal of Cellular and Molecular Medicine 13(7): 1348–1357.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen, J., X. Cui, A. Zacharek, H. Jiang, C. Roberts, C. Zhang, M. Lu, A. Kapke, C.S. Feldkamp, and M. Chopp. 2007. Niaspan increases angiogenesis and improves functional recovery after stroke. Ann Neurol 62(1): 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Croll, S.D., J.H. Goodman, and H.E. Scharfman. 2004. Vascular endothelial growth factor (VEGF) in seizures: A double-edged sword. Advances in Experimental Medicine and Biology 548: 57–68.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Ryck, M., J. Van Reempts, M. Borgers, A. Wauquier, and P.A. Janssen. 1989. Photochemical stroke model: Flunarizine prevents sensorimotor deficits after neocortical infarcts in rats. Stroke 20(10): 1383–1390.

    Article  PubMed  Google Scholar 

  • Feeney, D.M., A. Gonzalez, and W.A. Law. 1982. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217(4562): 855–857.

    Article  PubMed  CAS  Google Scholar 

  • Jaquet, K., K. Krause, M. Tawakol-Khodai, S. Geidel, and K.H. Kuck. 2002. Erythropoietin and VEGF exhibit equal angiogenic potential. Microvascular Research 64(2): 326–333.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, W.L., S.P. Zhang, H.B. Zhu, and J. Hou. 2011. Effect of 8-O-acetyl shanzhiside methylester increases angiogenesis and improves functional recovery after stroke. Basic & Clinical Pharmacology & Toxicology 108(1): 21–27.

    Article  CAS  Google Scholar 

  • Jiang, W.L., S.P. Zhang, H.B. Zhu, H. Jian, and J.W. Tian. 2010. Cornin ameliorates cerebral infarction in rats by antioxidant action and stabilization of mitochondrial function. Phytotherapy Research 24(4): 547–552.

    PubMed  CAS  Google Scholar 

  • Kang, Z., W. Jiang, H. Luan, F. Zhao, and S. Zhang. 2013. Cornin induces angiogenesis through PI3K-Akt-eNOS-VEGF signaling pathway. Food and Chemical Toxicology 58: 340–346.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A.S., and S.C. Johnston. 2011. Global variation in the relative burden of stroke and ischemic heart disease. Circulation 124(3): 314–323.

    Article  PubMed  Google Scholar 

  • Liu, X.F., J.R. Fawcett, R.G. Thorne, T.A. DeFor, and W.H. Frey. 2001. Intranasal administration of insulin-like growth factor-I bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of the Neurological Sciences 187(1–2): 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, C., C. Mill, A. Tsaousi, H. Williams, and S. George. 2011. Regulation of VSMC behavior by the cadherin-catenin complex. Frontiers in Bioscience (Landmark Ed) 16: 644–657.

    Article  CAS  Google Scholar 

  • Mammoto, T., A. Jiang, E. Jiang, and A. Mammoto. 2013. Platelet rich plasma extract promotes angiogenesis through the angiopoietin1-Tie2 pathway. Microvascular Research 89: 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Moss, A. 2013. The angiopoietin: Tie 2 interaction: A potential target for future therapies in human vascular disease. Cytokine & Growth Factor Reviews 24(6): 579–592.

    Article  CAS  Google Scholar 

  • Parmalee, N.L., and J. Kitajewski. 2008. Wnt signaling in angiogenesis. Current Drug Targets 9(7): 558–564.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pettersson, A., J.A. Nagy, L.F. Brown, C. Sundberg, E. Morgan, S. Jungles, R. Carter, J.E. Krieger, V.S. Harvey, I.A. Eckelhoefer, D. Feng, A.M. Dvorak, R.C. Mulligan, and H.F. Dvorak. 2000. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Laboratory Investigation 80(1): 99–115.

    Article  PubMed  CAS  Google Scholar 

  • Randi, A.M., M.A. Laffan, and R.D. Starke. 2013. Von Willebrand factor, angiodysplasia and angiogenesis. Mediterranean Journal of Hematology and Infectious Diseases 5(1): e2013060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roof, R.L., G.P. Schielke, X. Ren, and E.D. Hall. 2001. A comparison of long-term functional outcome after 2 middle cerebral artery occlusion models in rats. Stroke 32(11): 2648–2657.

    Article  PubMed  CAS  Google Scholar 

  • Satchell, S.C., K.L. Anderson, and P.W. Mathieson. 2004. Angiopoietin 1 and vascular endothelial growth factor modulate human glomerular endothelial cell barrier properties. Journal of the American Society of Nephrology 15(3): 566–574.

    Article  PubMed  CAS  Google Scholar 

  • Schallert, T., M. Upchurch, N. Lobaugh, S.B. Farrar, W.W. Spirduso, P. Gilliam, D. Vaughn, and R.E. Wilcox. 1982. Tactile extinction: Distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacology, Biochemistry and Behavior 16(3): 455–462.

    Article  PubMed  CAS  Google Scholar 

  • Schoch, H.J., S. Fischer, and H.H. Marti. 2002. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125(Pt 11): 2549–2557.

    Article  PubMed  Google Scholar 

  • Shudo, Y., J.E. Cohen, J.W. Macarthur, P. Atluri, P.F. Hsiao, E.C. Yang. 2013. Spatially oriented, temporally sequential smooth muscle cell-endothelial progenitor cell bi-level cell sheet neovascularizes ischemic myocardium. Circulation 128: S59–S68.

  • Starke, R.D., F. Ferraro, K.E. Paschalaki, N.H. Dryden, T.A. McKinnon, R.E. Sutton, E.M. Payne, D.O. Haskard, A.D. Hughes, D.F. Cutler, M.N. Laffan, and A.M. Randi. 2011. Endothelial von Willebrand factor regulates angiogenesis. Blood 117(3): 1071–1080.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sun, Y., K. Jin, L. Xie, J. Childs, X.O. Mao, A. Logvinova, and D.A. Greenberg. 2003. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. Journal of Clinical Investigation 111(12): 1843–1851.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swanson, R.A., M.T. Morton, G. Tsao-Wu, R.A. Savalos, C. Davidson, and F.R. Sharp. 1990. A semiautomated method for measuring brain infarct volume. Journal of Cerebral Blood Flow and Metabolism 10(2): 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Talwar, T., and M.V. Srivastava. 2014. Role of vascular endothelial growth factor and other growth factors in post-stroke recovery. Annals of Indian Academy of Neurology 17(1): 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tetsu, O., and F. McCormick. 1999. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726): 422–426.

    Article  PubMed  CAS  Google Scholar 

  • Vakili, A., F. Hosseinzadeh, and T. Sadogh. 2007. Effect of aminoguanidine on post-ischemic brain edema in transient model of focal cerebral ischemia. Brain Research 1170: 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Vlad, A., S. Rohrs, L. Klein-Hitpass, and O. Muller. 2008. The first five years of the Wnt targetome. Cellular Signalling 20(5): 795–802.

    Article  PubMed  CAS  Google Scholar 

  • Xing, Y., X. Zhang, K. Zhao, L. Cui, L. Wang, L. Dong, and X. Cao. 2012. Beneficial effects of sulindac in focal cerebral ischemia: A positive role in Wnt/beta-catenin pathway. Brain Research 1482: 71–80.

    Article  PubMed  CAS  Google Scholar 

  • Yang, K., and A. Proweller. 2011. Vascular smooth muscle Notch signals regulate endothelial cell sensitivity to angiogenic stimulation. Journal of Biological Chemistry 286(15): 13741–13753.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu, Y., J. Varughese, L.F. Brown, J.B. Mulliken, and J. Bischoff. 2001. Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. American Journal of Pathology 159(6): 2271–2280.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zerlin, M., M.A. Julius, and J. Kitajewski. 2008. Wnt/Frizzled signaling in angiogenesis. Angiogenesis 11(1): 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z.G., L. Zhang, Q. Jiang, and M. Chopp. 2002. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circulation Research 90(3): 284–288.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by National Natural Science Foundation of China (Grant No. 31170321) and in part financially supported by National Natural Science Foundation of China (Grant No. 31270391), and in part financially supported by Taishan Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangling Jiang or Shuping Zhang.

Ethics declarations

Conflict of interests

The author(s) declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhang, G., Kang, Z. et al. Cornin increases angiogenesis and improves functional recovery after stroke via the Ang1/Tie2 axis and the Wnt/β-catenin pathway. Arch. Pharm. Res. 39, 133–142 (2016). https://doi.org/10.1007/s12272-015-0652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-015-0652-1

Keywords

Navigation