Skip to main content
Log in

Nano-enabled delivery systems across the blood–brain barrier

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The development of drugs to treat disorders of the central nervous system (CNS) faces difficulties in achieving penetration of a drug through the blood–brain barrier (BBB) and allowing the drug to reach its intended target in the brain. There have been strategies to improve drug delivery to the brain through endogenous transport pathways such as passive diffusion, endocytosis, and active transport. Among various strategies, nano-enabled delivery systems offer a promising solution to improve the uptake and targeted delivery of drugs into the brain. Various nanocarriers including liposomes, bolaamphiphiles and nanoparticles can be used as a means to encapsulate drugs, either alone or in combination with targeting ligands. Moreover, most of materials used in nanocarrier fabrication are both biodegradable and biocompatible, thereby increasing the clinical utility of them. Here, we review the possibility to employ nano-enabled materials for delivery of drug across the BBB and the recent advances in nanotechnologies for therapy of the CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, N.J., and I.A. Romero. 1996. Transporting therapeutics across the blood–brain barrier. Molecular Medicine Today 2: 106–113.

    Article  CAS  PubMed  Google Scholar 

  • Abbott, N.J., L. Ronnback, and E. Hansson. 2006. Astrocyte-endothelial interactions at the blood–brain barrier. Nature Reviews Neuroscience 7: 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Allemann, E., P. Gravel, J.C. Leroux, L. Balant, and R. Gurny. 1997. Kinetics of blood component adsorption on poly(D, L-lactic acid) nanoparticles: Evidence of complement C3 component involvement. Journal of Biomedical Materials Research 37: 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Aller, S.G., J. Yu, A. Ward, Y. Weng, S. Chittaboina, R. Zhuo, P.M. Harrell, Y.T. Trinh, Q. Zhang, I.L. Urbatsch, and G. Chang. 2009. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718–1722.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alyautdin, R., D. Gothier, V. Petrov, D. Kharkevich, and J. Kreuter. 1995. Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 41: 44–48.

    CAS  Google Scholar 

  • Alyautdin, R.N., V.E. Petrov, K. Langer, A. Berthold, D.A. Kharkevich, and J. Kreuter. 1997. Delivery of loperamide across the blood–brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharmaceutical Research 14: 325–328.

    Article  CAS  PubMed  Google Scholar 

  • Ballabh, P., A. Braun, and M. Nedergaard. 2004. The blood–brain barrier: An overview: Structure, regulation, and clinical implications. Neurobiology of Disease 16: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Barbu, E., E. Molnar, J. Tsibouklis, and D.C. Gorecki. 2009. The potential for nanoparticle-based drug delivery to the brain: Overcoming the blood–brain barrier. Expert Opinion on Drug Delivery 6: 553–565.

    Article  CAS  PubMed  Google Scholar 

  • Bartus, R.T., P. Snodgrass, J. Marsh, M. Agostino, A. Perkins, and D.F. Emerich. 2000. Intravenous cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels, and enhances survival. The Journal of Pharmacology and Experimental Therapeutics 293: 903–911.

    CAS  PubMed  Google Scholar 

  • Baumann, M.D., C.E. Kang, C.H. Tator, and M.S. Shoichet. 2010. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 31: 7631–7639.

    Article  CAS  PubMed  Google Scholar 

  • Begley, D.J. 2004. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacology Therapeut 104: 29–45.

    Article  CAS  Google Scholar 

  • Begley, D.J., and M.W. Brightman. 2003. Structural and functional aspects of the blood–brain barrier. Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des Recherches Pharmaceutiques 61: 39–78.

    CAS  PubMed  Google Scholar 

  • Brigger, I., J. Morizet, G. Aubert, H. Chacun, M.J. Terrier-Lacombe, P. Couvreur, and G. Vassal. 2002. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. Journal of Pharmacology and Experimental Therapeutics 303: 928–936.

    Article  CAS  PubMed  Google Scholar 

  • Butt, A.M., H.C. Jones, and N.J. Abbott. 1990. Electrical resistance across the blood–brain barrier in anaesthetized rats: A developmental study. The Journal of Physiology 429: 47–62.

    CAS  PubMed  Google Scholar 

  • Dakwar, G.R., I. Abu Hammad, M. Popov, C. Linder, S. Grinberg, E. Heldman, and D. Stepensky. 2012. Delivery of proteins to the brain by bolaamphiphilic nano-sized vesicles. The Journal of Controlled Release 160: 315–321.

    Article  CAS  Google Scholar 

  • Deli, M.A. 2009. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochimica et Biophysica Acta 1788: 892–910.

    Article  CAS  PubMed  Google Scholar 

  • Dempsey, E.W., and G.B. Wislocki. 1955. An electron microscopic study of the blood–brain barrier in the rat, employing silver nitrate as a vital stain. The Journal of Biophysical and Biochemical Cytology 1: 245–256.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devries, H.E., J. Kuiper, A.G. Deboer, T.J.C. Vanberkel, and D.D. Breimer. 1997. The blood–brain barrier in neuroinflammatory diseases. Pharmacological Reviews 49: 143–155.

    CAS  Google Scholar 

  • Duffy, K.R., and W.M. Pardridge. 1987. Blood–brain barrier transcytosis of insulin in developing rabbits. Brain Research 420: 32–38.

    Article  CAS  PubMed  Google Scholar 

  • El-Bacha, R.S., and A. Minn. 1999a. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cellular and Molecular Biology (Noisy-le-grand) 45: 15–23.

    CAS  Google Scholar 

  • El-Bacha, R.S., and A. Minn. 1999b. Drug metabolizing enzymes in cerebrovascular endothelial cells afford a metabolic protection to the brain. Cellular and Molecular Biology 45: 15–23.

    CAS  PubMed  Google Scholar 

  • Emerich, D.F., R.L. Dean, J. Marsh, M. Pink, D. Lafreniere, P. Snodgrass, and R.T. Bartus. 2000. Intravenous cereport (RMP-7) enhances delivery of hydrophilic chemotherapeutics and increases survival in rats with metastatic tumors in the brain. Pharmaceutical Research 17: 1212–1219.

    Article  CAS  PubMed  Google Scholar 

  • Fabel, K., J. Dietrich, P. Hau, C. Wismeth, B. Winner, S. Przywara, A. Steinbrecher, W. Ullrich, and U. Bogdahn. 2001. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer 92: 1936–1942.

    Article  CAS  PubMed  Google Scholar 

  • Ford, J.M. 1996. Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. European Journal of Cancer 32A: 991–1001.

    Article  CAS  PubMed  Google Scholar 

  • Friese, A., E. Seiller, G. Quack, B. Lorenz, and J. Kreuter. 2000. Increase of the duration of the anticonvulsive activity of a novel NMDA receptor antagonist using poly(butylcyanoacrylate) nanoparticles as a parenteral controlled release system. European Journal of Pharmaceutics and Biopharmaceutics 49: 103–109.

    Article  CAS  PubMed  Google Scholar 

  • Gabathuler, R. 2010. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiology of Disease 37: 48–57.

    Article  CAS  PubMed  Google Scholar 

  • Gaillard, P.J. 2011. Case study: To-BBB’s G-technology, getting the best from drug-delivery research with industry-academia partnerships. Therapeutic Delivery 2: 1391–1394.

    Article  PubMed  Google Scholar 

  • Golden, P.L., T.J. Maccagnan, and W.M. Pardridge. 1997. Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. The Journal of Clinical Investigation 99: 14–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gulyaev, A.E., S.E. Gelperina, I.N. Skidan, A.S. Antropov, G.Y. Kivman, and J. Kreuter. 1999. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharmaceutical Research 16: 1564–1569.

    Article  CAS  PubMed  Google Scholar 

  • Guo, N., C. Mcintosh, and C. Shaw. 1992. Glutathione: New candidate neuropeptide in the central nervous system. Neuroscience 51: 835–842.

    Article  CAS  PubMed  Google Scholar 

  • Hau, P., K. Fabel, U. Baumgart, P. Rummele, O. Grauer, A. Bock, C. Dietmaier, W. Dietmaier, J. Dietrich, C. Dudel, F. Hubner, T. Jauch, E. Drechsel, I. Kleiter, C. Wismeth, A. Zellner, A. Brawanski, A. Steinbrecher, J. Marienhagen, and U. Bogdahn. 2004. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high-grade glioma. Cancer 100: 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  • Hu, K., Y. Shi, W. Jiang, J. Han, S. Huang, and X. Jiang. 2011. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation, characterization and efficacy in Parkinson’s disease. International Journal of Pharmaceutics 415: 273–283.

    Article  CAS  PubMed  Google Scholar 

  • Huwyler, J., D. Wu, and W.M. Pardridge. 1996. Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences USA 93: 14164–14169.

    Article  CAS  Google Scholar 

  • Jefferies, W.A., M.R. Brandon, S.V. Hunt, A.F. Williams, K.C. Gatter, and D.Y. Mason. 1984. Transferrin receptor on endothelium of brain capillaries. Nature 312: 162–163.

    Article  CAS  PubMed  Google Scholar 

  • Jones, A.R., and E.V. Shusta. 2007. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharmaceutical Research 24: 1759–1771.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joo, F. 1987. The blood–brain-barrier. Nature 329: 208.

    Article  CAS  PubMed  Google Scholar 

  • Juillerat-Jeanneret, L. 2008. The targeted delivery of cancer drugs across the blood–brain barrier: Chemical modifications of drugs or drug-nanoparticles? Drug Discovery Today 13: 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  • Kannan, R., R. Chakrabarti, D. Tang, K.J. Kim, and N. Kaplowitz. 2000. GSH transport in human cerebrovascular endothelial cells and human astrocytes: Evidence for luminal localization of Na+-dependent GSH transport in HCEC. Brain Research 852: 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Kreuter, J. 2001. Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery Reviews 47: 65–81.

    Article  CAS  PubMed  Google Scholar 

  • Kreuter, J., R.N. Alyautdin, D.A. Kharkevich, and A.A. Ivanov. 1995. Passage of peptides through the blood–brain-barrier with colloidal polymer particles (nanoparticles). Brain Research 674: 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Kuo, Y.C., and C.L. Lee. 2012. Methylmethacrylate-sulfopropylmethacrylate nanoparticles with surface RMP-7 for targeting delivery of antiretroviral drugs across the blood–brain barrier. Colloid Surface B 90: 75–82.

    Article  CAS  Google Scholar 

  • Lanius, R.A., C.A. Shaw, R. Wagey, and C. Krieger. 1994. Characterization, distribution, and protein kinase C-mediated regulation of [35S]glutathione binding sites in mouse and human spinal cord. Journal of Neurochemistry 63: 155–160.

    Article  CAS  PubMed  Google Scholar 

  • Lockman, P.R., R.J. Mumper, M.A. Khan, and D.D. Allen. 2002. Nanoparticle technology for drug delivery across the blood–brain barrier. Drug Development and Industrial Pharmacy 28: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, U., E. Wagenaar, J.H. Beijnen, J.W. Smit, D.K.F. Meijer, J. Vanasperen, P. Borst, and A.H. Schinkel. 1996. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr1a P-glycoprotein. British Journal of Pharmacology 119: 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  • Mensch, J., J. Oyarzabal, C. Mackie, and P. Augustijns. 2009. In vivo, in vitro and in silico methods for small molecule transfer across the BBB. Journal of Pharmaceutical Sciences 98: 4429–4468.

    Article  CAS  PubMed  Google Scholar 

  • Olivier, J.C. 2005. Drug transport to brain with targeted nanoparticles. The Journal of the American Society for Experimental Neuro Therapeutics 2: 108–119.

    Google Scholar 

  • Palmer, A.M., and F.A. Stephenson. 2005. CNS drug discovery: Challenges and solutions. Drug News and Perspectives 18: 51–57.

    PubMed  Google Scholar 

  • Pang, Z., W. Lu, H. Gao, K. Hu, J. Chen, C. Zhang, X. Gao, X. Jiang, and C. Zhu. 2008. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26. The Journal of Controlled Release 128: 120–127.

    Article  CAS  Google Scholar 

  • Papadopoulos, M.C., S. Saadoun, D.C. Davies, and B.A. Bell. 2001. Emerging molecular mechanisms of brain tumour oedema. British Journal of Neurosurgery 15: 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge, W.M. 2002. Why is the global CNS pharmaceutical market so under-penetrated? Drug Discovery Today 7: 5–7.

    Article  PubMed  Google Scholar 

  • Pardridge, W.M. 2003. Blood–brain barrier drug targeting: The future of brain drug development. Molecular Interventions 3: 90–105.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge, W.M. 2007. Drug targeting to the brain. Pharmaceutical Research 24: 1733–1744.

    Article  CAS  PubMed  Google Scholar 

  • Pardridge, W.M. 2010. Biopharmaceutical drug targeting to the brain. Journal of Drug Targeting 18: 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Patel, M.M., B.R. Goyal, S.V. Bhadada, J.S. Bhatt, and A.F. Amin. 2009. Getting into the brain approaches to enhance brain drug delivery. Central Nervous System Drugs 23: 35–58.

    CAS  Google Scholar 

  • Pathan, S.A., Z. Iqbal, S.M. Zaidi, S. Talegaonkar, D. Vohra, G.K. Jain, A. Azeem, N. Jain, J.R. Lalani, R.K. Khar, and F.J. Ahmad. 2009. CNS drug delivery systems: Novel approaches. Recent Patents on Drug Delivery and Formulation 3: 71–89.

    Article  CAS  PubMed  Google Scholar 

  • Popov, M., S. Grinberg, C. Linder, T. Waner, B. Levi-Hevroni, R.J. Deckelbaum, and E. Heldman. 2012. Site-directed decapsulation of bolaamphiphilic vesicles with enzymatic cleavable surface groups. The Journal of Controlled Release 160: 306–314.

    Article  CAS  Google Scholar 

  • Popov, M., C. Linder, R.J. Deckelbaum, S. Grinberg, I.H. Hansen, E. Shaubi, T. Waner, and E. Heldman. 2010. Cationic vesicles from novel bolaamphiphilic compounds. Journal of Liposome Research 20: 147–159.

    Article  CAS  PubMed  Google Scholar 

  • Ranganath, S.H., Y. Fu, D.Y. Arifin, I. Kee, L. Zheng, H.S. Lee, P.K. Chow, and C.H. Wang. 2010. The use of submicron/nanoscale PLGA implants to deliver paclitaxel with enhanced pharmacokinetics and therapeutic efficacy in intracranial glioblastoma in mice. Biomaterials 31: 5199–5207.

    Article  CAS  PubMed  Google Scholar 

  • Ranganathan, R., S. Madanmohan, A. Kesavan, G. Baskar, Y.R. Krishnamoorthy, R. Santosham, D. Ponraju, S.K. Rayala, and G. Venkatraman. 2012. Nanomedicine: Towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomedicine 7: 1043–1060.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reese, T.S., and M.J. Karnovsky. 1967. Fine structural localization of a blood–brain barrier to exogenous peroxidase. The Journal of Cell Biology 34: 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Ren, J., S. Shen, D. Wang, Z. Xi, L. Guo, Z. Pang, Y. Qian, X. Sun, and X. Jiang. 2012. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials 33: 3324–3333.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, S.W., T. Ludwig, L. Tatenhorst, S. Braune, H. Oberleithner, V. Senner, and W. Paulus. 2004. Glioblastoma cells release factors that disrupt blood–brain barrier features. Acta Neuropathologica 107: 272–276.

    Article  PubMed  Google Scholar 

  • Silva, G.A. 2008. Nanotechnology approaches to crossing the blood–brain barrier and drug delivery to the CNS. BMC Neuroscience 9(Suppl 3): S4. doi:10.1186/1471-2202-9-S3-S4.

    Article  PubMed Central  PubMed  Google Scholar 

  • Soni, V., D.V. Kohli, and S.K. Jain. 2005. Transferrin coupled liposomes as drug delivery carriers for brain targeting of 5-florouracil. Journal of Drug Targeting 13: 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Soppimath, K.S., T.M. Aminabhavi, A.R. Kulkarni, and W.E. Rudzinski. 2001. Biodegradable polymeric nanoparticles as drug delivery devices. The Journal of Controlled Release 70: 1–20.

    Article  CAS  Google Scholar 

  • Sun, X., Z. Pang, H. Ye, B. Qiu, L. Guo, J. Li, J. Ren, Y. Qian, Q. Zhang, J. Chen, and X. Jiang. 2012. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials 33: 916–924.

    CAS  PubMed  Google Scholar 

  • Tamai, I., Y. Sai, H. Kobayashi, M. Kamata, T. Wakamiya, and A. Tsuji. 1997. Structure-internalization relationship for adsorptive-mediated endocytosis of basic peptides at the blood–brain barrier. The Journal of Pharmacology and Experimental Therapeutics 280: 410–415.

    CAS  PubMed  Google Scholar 

  • Vlieghe, P., and M. Khrestchatisky. 2010. Peptide-based vectors for blood–brain barrier targeting and delivery of drugs to the central nervous system. Therapeutic Delivery 1: 489–494.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Z., Z. Yan, R. He, Z. Pang, L. Guo, Y. Qian, X. Jiang, and L. Fang. 2011. Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Delivery 18: 555–561.

    CAS  PubMed  Google Scholar 

  • Wissing, S.A., O. Kayser, and R.H. Muller. 2004. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews 56: 1257–1272.

    Article  CAS  PubMed  Google Scholar 

  • Wolburg, H., and A. Lippoldt. 2002. Tight junctions of the blood–brain barrier: Development, composition and regulation. Vascular Pharmacology 38: 323–337.

    Article  CAS  PubMed  Google Scholar 

  • Xin, H., X. Sha, X. Jiang, L. Chen, K. Law, J. Gu, Y. Chen, X. Wang, and X. Fang. 2012. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(epsilon-caprolactone) nanoparticles. Biomaterials 33: 1673–1681.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q.Z., L.S. Zha, Y. Zhang, W.M. Jiang, W. Lu, Z.Q. Shi, X.G. Jiang, and S.K. Fu. 2006. The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats. Journal of Drug Targeting 14: 281–290.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program (Theragnosis, Global RNAi Carrier Initiative, and KIST Young Fellow) of KIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangmeyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, S.R., Kim, K. Nano-enabled delivery systems across the blood–brain barrier. Arch. Pharm. Res. 37, 24–30 (2014). https://doi.org/10.1007/s12272-013-0272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0272-6

Keywords

Navigation