Skip to main content
Log in

Effect of excipients on dissolution enhancement of aceclofenac solid dispersions studied using response surface methodology: a technical note

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The aim of present study was to enhance the dissolution rate of poorly water-soluble drug aceclofenac by solid dispersion technique using corn starch, dicalcium phosphate, lactose, and microcrystalline cellulose as carriers. Solid dispersions were prepared by solvent wetting method using 32 full factorial design for each of the carrier. The prepared solid dispersions were evaluated for differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and angle of repose. In vitro dissolution studies were carried out in phosphate buffer (pH 7.5) and 0.1 N HCl (pH 1.2). The results of solid state characterization bring to view that in solid dispersions the crystalline drug gets converted to its amorphous form. FTIR study results indicated the absence of interaction between aceclofenac and carriers. For prepared solid dispersions, angle of repose was found to be in the range of 26.19° to 35.29°, which indicates good flowability. Enhanced drug dissolution was obtained with carrier in order lactose > corn starch > microcrystalline cellulose > dicalcium phosphate. Hence, these carriers could be used to enhance the dissolution rate of poorly water-soluble drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allahham, A., and P.J. Stewart. 2007. Enhancement of the dissolution of indomethacin in interactive mixtures using added fine lactose. European Journal of Pharmaceutics and Biopharmaceutics 67: 732–742.

    Article  CAS  PubMed  Google Scholar 

  • Alsaidan, S.M., A.A. Alsughayer, and A.G. Eshra. 1998. Improved dissolution rate of indomethacin by adsorbents. Drug Development and Industrial Pharmacy 24: 389–394.

    Article  CAS  PubMed  Google Scholar 

  • Alway, B., R. Sangchantra, and P.J. Stewart. 1996. Modelling the dissolution of diazepam in lactose interactive mixtures. International Journal of Pharmaceutics 130: 213–224.

    Article  CAS  Google Scholar 

  • Barzegar-Jalali, M., N. Maleki, A. Garjani, A.A. Khandar, M. Haji-Hosseinloo, R. Jabbari, and S. Dastmalchi. 2002. Enhancement of dissolution rate and anti-inflammatory effects of piroxicam using solvent deposition technique. Drug Development and Industrial Pharmacy 28: 681–686.

    Article  CAS  PubMed  Google Scholar 

  • Bikiaris, D., G.Z. Papageorgiou, A. Stergiou, E. Pavlidou, E. Karavas, F. Kanaze, and M. Georgarakis. 2005. Physicochemical studies on solid dispersions of poorly water-soluble drugs: Evaluation of capabilities and limitations of thermal analysis techniques. Thermochimica Acta 439: 58–67.

    Article  CAS  Google Scholar 

  • Chiou, W.L., and S. Riegelman. 1971. Pharmaceutical applications of solid dispersion systems. Journal of Pharmaceutical Sciences 60: 1281–1302.

    Article  CAS  PubMed  Google Scholar 

  • Emara, L.H., R.M. Badr, and A. Abd Elbary. 2002. Improving the dissolution and bioavailability of nifedipine using solid dispersions and solubilizers. Drug Development and Industrial Pharmacy 28: 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Ganesan, V., S.M. Sivakumar, and M. Kannadasan. 2004. Enhancement of dissolution rate of flurbiprofen. The Indian Pharmacist 3: 61–64.

    CAS  Google Scholar 

  • Ghareeb, M.M., A.A. Abdulrasool, A.A. Hussein, and M.I. Noordin. 2009. Kneading technique for preparation of binary solid dispersion of meloxicam with poloxamer 188. AAPS PharmSciTech 10: 1206–1215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heo, M.Y., Z.Z. Piao, T.W. Kim, Q.R. Cao, A. Kim, and B.J. Lee. 2005. Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Archives of Pharmacal Research 28: 604–611.

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa, N., H. Okamoto, and K. Danjo. 1999. Lactose as a low molecular weight carrier of solid dispersions for carbamazepine and ethenzamidc. Chemical and Pharmaceutical Bulletin 47: 417–420.

    Article  CAS  PubMed  Google Scholar 

  • Hussein, A., S. El-Menshawe, and M. Afouna. 2012. Enhancement of the in vitro dissolution and in vivo oral bioavailability of silymarin from liquid-filled hard gelatin capsules of semisolid dispersion using Gelucire 44/14 as a carrier. Pharmazie 67: 209–214.

    CAS  PubMed  Google Scholar 

  • Kim, E.J., M.K. Chun, J.S. Jang, I.H. Lee, K.R. Lee, and H.K. Choi. 2006. Preparation of a solid dispersion of felodipine using a solvent wetting method. European Journal of Pharmaceutics and Biopharmaceutics 64: 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Li, D.X., K.Y. Jang, W. Kang, K. Bae, M.H. Lee, Y.K. Oh, J.P. Jee, Y.J. Park, D.H. Oh, and Y.G. Seo. 2010. Enhanced solubility and bioavailability of sibutramine base by solid dispersion system with aqueous medium. Biological and Pharmaceutical Bulletin 33: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Lim, H.T., P. Balakrishnan, D.H. Oh, K.H. Joe, Y.R. Kim, D.H. Hwang, Y.B. Lee, C.S. Yong, and H.G. Choi. 2010. Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: Physicochemical characterization and pharmacokinetics in beagle dogs. International Journal of Pharmaceutics 397: 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Maulvi, F.A., S.J. Dalwadi, V.T. Thakkar, T.G. Soni, M.C. Gohel, and T.R. Gandhi. 2011. Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technology 207: 47–54.

    Article  CAS  Google Scholar 

  • Moneghini, M., B. Bellich, P. Baxa, and F. Princivalle. 2008. Microwave generated solid dispersions containing ibuprofen. International Journal of Pharmaceutics 361: 125–130.

    Article  CAS  PubMed  Google Scholar 

  • Oh, D.H., Y.J. Park, J.H. Kang, C.S. Yong, and H.G. Choi. 2011. Physicochemical characterization and in vivo evaluation of flurbiprofen-loaded solid dispersion without crystalline change. Drug Delivery 18: 46–53.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y.J., J.J. Xuan, D.H. Oh, P. Balakrishnan, H.J. Yang, W.H. Yeo, M.K. Lee, H.G. Choi, and C.S. Yong. 2010. Development of novel itraconazole-loaded solid dispersion without crystalline change with improved bioavailability. Archives of Pharmacal Research 33: 1217–1225.

    Article  CAS  PubMed  Google Scholar 

  • Patel, A.R., and V.Y. Joshi. 2008. Evaluation of SLS:APG mixed surfactant systems as carrier for solid dispersion. AAPS PharmSciTech 9: 583–590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patel, M., A. Tekade, S. Gattani, and S. Surana. 2008. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques. AAPS PharmSciTech 9: 1262–1269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rane, Y., R. Mashru, M. Sankalia, and J. Sankalia. 2007. Effect of hydrophilic swellable polymers on dissolution enhancement of carbamazepine solid dispersions studied using response surface methodology. AAPS PharmSciTech 8: 1–11.

    Article  Google Scholar 

  • Rouchotas, C., O.E. Cassidy, and G. Rowley. 2000. Comparison of surface modification and solid dispersion techniques for drug dissolution. International Journal of Pharmaceutics 195: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Saito, M., T. Ugajin, Y. Nozawa, Y. Sadzuka, A. Miyagishima, and T. Sonobe. 2002. Preparation and dissolution characteristics of griseofulvin solid dispersions with saccharides. International Journal of Pharmaceutics 249: 71–79.

    Article  CAS  PubMed  Google Scholar 

  • Shah, M., and K. Pathak. 2010. Development and statistical optimization of solid lipid nanoparticles of simvastatin by using 23 full-factorial design. AAPS PharmSciTech 11: 489–496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinha, S., M. Ali, S. Baboota, A. Ahuja, A. Kumar, and J. Ali. 2010. Solid dispersion as an approach for bioavailability enhancement of poorly water-soluble drug ritonavir. AAPS PharmSciTech 11: 518–527.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tantishaiyakul, V., N. Kaewnopparat, and S. Ingkatawornwong. 1996. Properties of solid dispersions of piroxicam in polyvinylpyrrolidone K-30. International Journal of Pharmaceutics 143: 59–66.

    Article  CAS  Google Scholar 

  • Urbanetz, N.A., and B.C. Lippold. 2005. Solid dispersions of nimodipine and polyethylene glycol 2000: Dissolution properties and physico-chemical characterisation. European Journal of Pharmaceutics and Biopharmaceutics 59: 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Vadher, A.H., J.R. Parikh, R.H. Parikh, and A.B. Solanki. 2009. Preparation and characterization of co-grinded mixtures of aceclofenac and Neusilin US 2 for dissolution enhancement of aceclofenac. AAPS PharmSciTech 10: 606–614.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yano, H., and P. Kleinebudde. 2010. Improvement of dissolution behaviour for poorly water-soluble drug by application of cyclodextrin in extrusion process: Comparison between melt extrusion and wet extrusion. AAPS PharmSciTech 11: 885–893.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to management of Meerut Institute of Engineering and Technology (UP, India) for providing the necessary facilities. Authors are also thankful to Mr. Jaya Gopal Meher, Research fellow, CSIR-CDRI for helping us to improve the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobhit Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Gupta, S.K. Effect of excipients on dissolution enhancement of aceclofenac solid dispersions studied using response surface methodology: a technical note. Arch. Pharm. Res. 37, 340–351 (2014). https://doi.org/10.1007/s12272-013-0146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0146-y

Keywords

Navigation