Skip to main content
Log in

Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The objective of this study was to develop and statistically optimize chitosan nanospheres. For this purpose chitosan powder was turned into nanospheres using tripolyphosphate as a crosslinker and through ionic gelation. D-optimal response surface design was applied to optimize the nanospheres. Their size and polydispersity index (PDI) were measured as the dependant variables. Then the inactivated influenza virus and/or CpG ODN or Quillaja saponin (QS) were incorporated into the chitosan nanospheres. The release profiles of the antigen and both adjuvants were obtained. The toxicity of the formulations was tested by XTT using Calu 6 cell lines. The size distribution and PDI of plain chitosan nanospheres was 581.1 ± 32.6 and 0.478 ± 0.04. After 4 h the release of antigen, QS and CpG from the chitosan matrix were 33, 36 and 62 %, respectively. The inactivated virus remained intact during preparation, as revealed by the SDS-PAGE method. Differential scanning calorimetry and Fourier Transform Infrared Spectroscopy indicated no serious structural changes in the chitosan carrier in the presence of either the antigen or the immunoadjuvants. Although the antigen loaded into chitosan nanospheres showed slight cytotoxicity on lung-cancer cells, co-encapsulation of the adjuvant (especially CpG) lowered this effect. The results demonstrated that chitosan as a carrier and immunostimulator, along with CpG or QS adjuvants, creates a potential influenza vaccine delivery system which can be administered nasally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alley, M.C., D.A. Scudiero, A. Monks, M.L. Hursey, M.J. Czerwinski, D.L. Fine, B.J. Abbott, J.G. Mayo, R.H. Shoemaker, and M.R. Boyd. 1988. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research 48: 589–601.

    PubMed  CAS  Google Scholar 

  • Amidi, M., E. Mastrobattista, W. Jiskoot, and W.E. Hennink. 2010. Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews 62: 59–82.

    Article  PubMed  CAS  Google Scholar 

  • Amorij, J.P., A. Huckriede, J. Wilschut, H.W. Frijlink, and W.L. Hinrichs. 2008. Development of stable influenza vaccine powder formulations: Challenges and possibilities. Pharmaceutical Research 25: 1256–1273.

    Article  PubMed  CAS  Google Scholar 

  • Amour, S., N. Voirin, C. Regis, M. Bouscambert-Duchamp, B. Comte, B. Coppéré, S. Pires-Cronenberger, B. Lina, and P. Vanhems. 2012. Influenza vaccine effectiveness among adult patients in a University of Lyon hospital (2004–2009). Vaccine 30: 821–824.

    Article  PubMed  Google Scholar 

  • Arthanari, S., P. Renukadevi, and K.R. Mani. 2011. Preparation and evaluation of sucrose stabilized tetanus toxoid encapsulated into chitosan microspheres. Genomic Medicine, Biomarkers, and Health Sciences 3: 91–97.

    Article  CAS  Google Scholar 

  • Artursson, P., T. Lindmark, S.S. Davis, and L. Illum. 1994. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharmaceutical Research 11: 1358–1361.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma, H., N.B. Zamri, S. Sekine, Y. Fukuyama, D. Tokuhara, R.S. Gilbert, T. Fukuiwa, K. Fujihashi, T. Sata, and M. Tashiro. 2012. A novel combined adjuvant for nasal delivery elicits mucosal immunity to influenza in aging. Vaccine 30: 803–812.

    Article  PubMed  CAS  Google Scholar 

  • Baia, M., S. Astilean, and T. Iliescu. 2008. Fundamentals of infrared and Raman spectroscopy, SERS, and theoretical simulations. Raman and SERS investigations of pharmaceuticals, 9–35. Berlin: Springer.

    Book  Google Scholar 

  • Banerjee, T., S. Mitra, A. Kumar Singh, R. Kumar Sharma, and A. Maitra. 2002. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. International Journal of Pharmaceutics 243: 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Bernkop-Schnürch, A., and M.E. Krajicek. 1998. Mucoadhesive polymers as platforms for peroral peptide delivery and absorption: Synthesis and evaluation of different chitosan–EDTA conjugates. Journal of Control Release 50: 215–223.

    Article  Google Scholar 

  • Bollag, D.M., M.D. Rozycki, and S.J. Edelstein. 1996. Protein methods. Wiley-Liss: New York.

    Google Scholar 

  • Boonsongrit, Y., B.W. Mueller, and A. Mitrevej. 2008. Characterization of drug–chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. European Journal of Pharmaceutics and Biopharmaceutics 69: 388–395.

    Article  PubMed  CAS  Google Scholar 

  • Buendia, A.J., L. Nicolas, N. Ortega, M.C. Gallego, C.M. Martinez, J. Sanchez, M.R. Caro, J.A. Navarro, and J. Salinas. 2007. Characterization of a murine model of intranasal infection suitable for testing vaccines against C. abortus. Veterinary Immunology and Immunopathology 115: 76–86.

    Article  PubMed  CAS  Google Scholar 

  • Carcaboso, A.M., R.M. Hernandez, M. Igartua, J.E. Rosas, M.E. Patarroyo, and J.L. Pedraz. 2004. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 22: 1423–1432.

    Article  PubMed  CAS  Google Scholar 

  • Carter, J.B., and V.A. Saunders. 2007. Virology, principles and applications. Toronto: Wiley.

    Google Scholar 

  • Choisnard, L., A. Geze, M. Bigan, J.L. Putaux, and D. Wouessidjewe. 2005. Efficient size control of amphiphilic cyclodextrin nanoparticles through a statistical mixture design methodology. Journal of Pharmacy & Pharmaceutical Sciences 8: 593–601.

    CAS  Google Scholar 

  • Chowdhury, D.K., and A.K. Mitra. 2000. Kinetics of a model nucleoside (guanosine) release from biodegradable poly(DL-lactide-co-glycolide) microspheres: a delivery system for long-term intraocular delivery. Pharmaceutical Development and Technology 5: 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Dehghan, S., R. Aboofazeli, M. Avadi, and R. Khaksar. 2010. Formulation optimization of nifedipine containing microspheres using factorial design. African Journal of Pharmacy and Pharmacology 4: 346–354.

    CAS  Google Scholar 

  • Fernandez-Urrusuno, R., P. Calvo, C. Remunan-Lopez, J.L. Vila-Jato, and M.J. Alonso. 1999. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharmaceutical Research 16: 1576–1581.

    Article  PubMed  CAS  Google Scholar 

  • Gan, Q., and T. Wang. 2007. Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces 59: 24–34.

    Article  PubMed  CAS  Google Scholar 

  • Garmise, R.J., H.F. Staats, and A.J. Hickey. 2007. Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech 8: E81.

    Article  PubMed  Google Scholar 

  • Ghadiri, M., S. Fatemi, A. Vatanara, D. Doroud, A.R. Najafabadi, M. Darabi, and A.A. Rahimi. 2012. Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment efficiency and particle size. International Journal of Pharmaceutics 424: 128–137.

    Article  PubMed  CAS  Google Scholar 

  • Gremlich, H.-U. 2000. Infrared and Raman spectroscopy. In Analytical techniques in combinatoral chemistry, ed. M.E. Swartz, 65–76. New York: Marcel Dekker.

    Google Scholar 

  • Gupta, N.K., P. Tomar, V. Sharma, and V.K. Dixit. 2011. Development and characterization of chitosan coated poly-(varepsilon-caprolactone) nanoparticulate system for effective immunization against influenza. Vaccine 29: 9026–9037.

    Article  PubMed  CAS  Google Scholar 

  • Hagenaars, N., R.J. Verheul, I. Mooren, P.H. De Jong, E. Mastrobattista, H.L. Glansbeek, J.G. Heldens, H. Van Den Bosch, W.E. Hennink, and W. Jiskoot. 2009. Relationship between structure and adjuvanticity of N, N, N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. Journal of Control Release 140: 126–133.

    Article  CAS  Google Scholar 

  • Iqbal, M., W. Lin, I. Jabbal-Gill, S.S. Davis, M.W. Steward, and L. Illum. 2003. Nasal delivery of chitosan–DNA plasmid expressing epitopes of respiratory syncytial virus (RSV) induces protective CTL responses in BALB/c mice. Vaccine 21: 1478–1485.

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar, R., M. Prabaharan, and R.A.A. Muzzarelli. 2011. Chitosan for biomaterials I. Berlin: Springer.

    Google Scholar 

  • Kaufmann, S.H.E. 2004. Novel vaccination strategies. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Khatri, K., A.K. Goyal, P.N. Gupta, N. Mishra, and S.P. Vyas. 2008. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. International Journal of Pharmaceutics 354: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.H., Y.H. Park, K.J. Kim, and C.S. Cho. 2003. Release of albumin from chitosan-coated pectin beads in vitro. International Journal of Pharmaceutics 250: 371–383.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, A.M., A.K. Yi, S. Matson, T.J. Waldschmidt, G.A. Bishop, R. Teasdale, G.A. Koretzky, and D.M. Klinman. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546–549.

    Article  PubMed  CAS  Google Scholar 

  • Kuilin, D., Z. Yaqin, J. Na, L. Jing, Z. Xiangyang, and T.A. Hua. 2007. A dithiocarbonate group-assisted graft copolymerization of methyl acrylate onto chitosan. Chemical Journal on Internet. Avaliable at: http://www.chemistrymag.org/cji/2007/094019pe.htm.

  • Liang, J., F. Li, Y. Fang, W. Yang, X. An, L. Zhao, Z. Xin, L. Cao, and Q. Hu. 2011. Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloid Surface B 82: 297–301.

    Article  CAS  Google Scholar 

  • Limapornvanich, A., S. Jitpukdeebodintra, C. Hengtrakool, and U. Kedjarune-Leggat. 2009. Bovine serum albumin release from novel chitosan-fluoro-aluminosilicate glass ionomer cement: Stability and cytotoxicity studies. Journal of Dentistry 37: 686–690.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Y. Sun, Y. Li, S. Xu, J. Tang, J. Ding, and Y. Xu. 2011. Preparation and characterization of α-galactosidase-loaded chitosan nanoparticles for use in foods. Carbohydrate Polymers 83: 1162–1168.

    Article  CAS  Google Scholar 

  • Longo-Sorbello, G.S.A., G. Saydam, D. Banerjee, and J.R. Bertino. 2005. Cytotoxicity and cell growth assays. In Cell biology, ed. J.E. Celis, N. Carter, K. Simons, J.V. Small, and T. Hunter, 315–324. Burlington: Elsevier.

    Google Scholar 

  • Lopez, A.M., R. Hecker, G. Mutwiri, S.V.D. Littel-Van Den Hurk, L.A. Babiuk, and H.G.G. Townsend. 2006. Formulation with CpG ODN enhances antibody responses to an equine influenza virus vaccine. Veterinary Immunology and Immunopathology 114: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Lu, W., and T.G. Park. 1995. Protein release from poly(lactic-co-glycolic acid) microspheres: protein stability problems. PDA Journal of Pharmaceutical Science and Technology 49: 13–19.

    PubMed  CAS  Google Scholar 

  • Lueßen, H.L., C.O. Rentel, A.F. Kotzé, C.M. Lehr, A.G. De Boer, J.C. Verhoef, and H.E. Junginger. 1997. Mucoadhesive polymers in peroral peptide drug delivery. IV. Polycarbophil and chitosan are potent enhancers of peptide transport across intestinal mucosae in vitro. Journal of Controlled Release 45: 15–23.

    Article  Google Scholar 

  • Malyala, P., D.T. O’hagan, and M. Singh. 2009. Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Advanced Drug Delivery Reviews 61: 218–225.

    Article  PubMed  CAS  Google Scholar 

  • Mao, S., W. Sun, and T. Kissel. 2010. Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews 62: 12–27.

    Article  PubMed  CAS  Google Scholar 

  • Matassov, D., A. Cupo, and J.M. Galarza. 2007. A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1). Viral Immunology 20: 441–452.

    Article  PubMed  CAS  Google Scholar 

  • Mehrgan, H., and S.A. Mortazavi. 2005. The release behavior and kinetic evaluation of diltiazem HCl from various hydrophilic and plastic based matrices. Iranian Journal of Pharmaceutical Research 3: 137–146.

    Google Scholar 

  • Mimaki, Y., M. Kuroda, A. Kameyama, A. Yokosuka, and Y. Sashida. 1998. Steroidal saponins from the rhizomes of Hosta sieboldii and their cytostatic activity on HL-60 cells. Phytochemistry 48: 1361–1369.

    Article  PubMed  CAS  Google Scholar 

  • Mohajel, N., A.R Najafabadi, K. Azadmanesh, A. Vatanara, E. Moazeni, A. Rahimi and K. Gilani. 2012. Optimization of a spray drying process to prepare dry powder microparticles containing plasmid nanocomplex. International Journal of Pharmaceutics 423: 577–585.

    Google Scholar 

  • Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Motwani, S.K., S. Chopra, S. Talegaonkar, K. Kohli, F.J. Ahmad, and R.K. Khar. 2008. Chitosan–sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. European Journal of Pharmaceutics and Biopharmaceutics 68: 513–525.

    PubMed  CAS  Google Scholar 

  • Nagai, T., Y. Suzuki, H. Kiyohara, E. Susa, T. Kato, T. Nagamine, Y. Hagiwara, S.-I. Tamura, T. Yabe, C. Aizawa, and H. Yamada. 2001. Onjisaponins, from the root of Polygala tenuifolia Willdenow, as effective adjuvants for nasal influenza and diphtheria-pertussis-tetanus vaccines. Vaccine 19: 4824–4834.

    Article  PubMed  CAS  Google Scholar 

  • O’hagan, D. 2006. Microparticles as vaccine delivery systems. In Immunopotentiators in modern vaccines, ed. V. Schijins, and D. O’hagan, 123–147. USA: Academic Press.

    Chapter  Google Scholar 

  • Oxford, J.S., T. Corcoran, and A.L. Hugentobler. 1981. Quantitative analysis of the protein composition of influenza A and B viruses using high resolution SDS polyacrylamide gels. Journal of Biological Standardization 9: 483–491.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J.S., W.J. Cromie, and R.C. Lee. 1998. Surfactant administration reduces testicular ischemia-reperfusion injury. Journal of Urology 159: 2136–2139.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry 83: 346–356.

    Article  PubMed  CAS  Google Scholar 

  • Poovi, G., U.M. Dhana Lekshmi, N. Narayanan, and P. Neelakanta Reddy. 2011. Preparation and characterization of repaglinide loaded chitosan polymeric nanoparticles. Research Journal of Nanoscience and Nanotechnology 1: 12–24.

    Article  Google Scholar 

  • Qi, L., and Z. Xu. 2006. In vivo antitumor activity of chitosan nanoparticles. Bioorganic & Medicinal Chemistry Letters 16: 4243–4245.

    Article  CAS  Google Scholar 

  • Read, R.C., S.C. Naylor, C.W. Potter, J. Bond, I. Jabbal-Gill, A. Fisher, L. Illum, and R. Jennings. 2005. Effective nasal influenza vaccine delivery using chitosan. Vaccine 23: 4367–4374.

    Article  PubMed  CAS  Google Scholar 

  • Rejinold, N.S., M. Muthunarayanan, K. Muthuchelian, K.P. Chennazhi, S.V. Nair, and R. Jayakumar. 2011. Saponin-loaded chitosan nanoparticles and their cytotoxicity to cancer cell lines in vitro. Carbohydrate Polymers 84: 407–416.

    Article  CAS  Google Scholar 

  • Revaz, V., R. Zurbriggen, C. Moser, J.T. Schiller, F. Ponci, M. Bobst, and D. Nardelli-Haefliger. 2007. Humoral and cellular immune responses to airway immunization of mice with human papillomavirus type 16 virus-like particles and mucosal adjuvants. Antiviral Research 76: 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Sarmento, B., D. Ferreira, F. Veiga, and A. Ribeiro. 2006. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers 66: 1–7.

    Article  CAS  Google Scholar 

  • Sayin, B., S. Somavarapu, X.W. Li, D. Sesardic, S. Senel, and O.H. Alpar. 2009. TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. European Journal of Pharmaceutical Sciences 38: 362–369.

    Article  PubMed  CAS  Google Scholar 

  • Scudiero, D.A., R.H. Shoemaker, K.D. Paull, A. Monks, S. Tierney, T.H. Nofziger, M.J. Currens, D. Seniff, and M.R. Boyd. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research 48: 4827–4833.

    PubMed  CAS  Google Scholar 

  • Siepmann, J., and N.A. Peppas. 2011. Higuchi equation: Derivation, applications, use and misuse. International Journal of Pharmaceutics 418: 6–12.

    Article  PubMed  CAS  Google Scholar 

  • Skene, C.D., and P. Sutton. 2006. Saponin-adjuvanted particulate vaccines for clinical use. Methods 40: 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Soppimath, K.S., A.R. Kulkarni, and T.M. Aminabhavi. 2001. Encapsulation of antihypertensive drugs in cellulose-based matrix microspheres: Characterization and release kinetics of microspheres and tableted microspheres. Journal of Microencapsulation 18: 397–409.

    Article  PubMed  CAS  Google Scholar 

  • Sun, H.-X., Y. Xie, and Y.-P. Ye. 2009. Advances in saponin-based adjuvants. Vaccine 27: 1787–1796.

    Article  PubMed  CAS  Google Scholar 

  • Tafaghodi, M., M. Eskandari, M. Kharazizadeh, A. Khamesipour, and M.R. Jaafari. 2010. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Tropical Biomedicine 27: 639–650.

    PubMed  CAS  Google Scholar 

  • Tafaghodi, M., and S. Rastegar. 2010. Preparation and in vivo study of dry powder microspheres for nasal immunization. Journal of Drug Targeting 18: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Van Der Lubben, I.M., G. Kersten, M.M. Fretz, C. Beuvery, J. Coos Verhoef, and H.E. Junginger. 2003. Chitosan microparticles for mucosal vaccination against diphtheria: Oral and nasal efficacy studies in mice. Vaccine 21: 1400–1408.

    Article  PubMed  Google Scholar 

  • Van Der Lubben, I.M., J.C. Verhoef, G. Borchard, and H.E. Junginger. 2001a. Chitosan and its derivatives in mucosal drug and vaccine delivery. European Journal of Pharmaceutical Sciences 14: 201–207.

    Article  PubMed  Google Scholar 

  • Van Der Lubben, I.M., J.C. Verhoef, G. Borchard, and H.E. Junginger. 2001b. Chitosan for mucosal vaccination. Advanced Drug Delivery Reviews 52: 139–144.

    Article  PubMed  Google Scholar 

  • Vila, A., A. Sánchez, K. Janes, I. Behrens, T. Kissel, J.L.V. Jato, and M.A.J. Alonso. 2004. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. European Journal of Pharmaceutics and Biopharmaceutics 57: 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Wan, A., Y. Sun, and H. Li. 2009. Characterization of novel quaternary chitosan derivative nanoparticles loaded with protein. Journal of Applied Polymer Science 114: 2639–2647.

    Article  CAS  Google Scholar 

  • WHO, WHO media influenza factsheet, Geneva, (2003).

  • Xu, Y., and Y. Du. 2003. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics 250: 215–226.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X., B.A. Shah, N.K. Kotadia, J. Li, H. Gu, and Z. Wu. 2010. The development and mechanism studies of cationic chitosan-modified biodegradable PLGA nanoparticles for efficient siRNA drug delivery. Pharmaceutical Research 27: 1285–1295.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present paper is a part of a Ph.D. thesis financially supported by a research grant provided by INSF and Vice Chancellor for Research, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tafaghodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehghan, S., Kheiri, M.T., Tabatabaiean, M. et al. Dry-powder form of chitosan nanospheres containing influenza virus and adjuvants for nasal immunization. Arch. Pharm. Res. 36, 981–992 (2013). https://doi.org/10.1007/s12272-013-0043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0043-4

Keywords

Navigation