Skip to main content
Log in

Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: Microarray analysis

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The leaves and stems of Asteraceae Artemisia iwayomogi (Ai) for a long time have been known to inhibit inflammatory cytokine production and allergic reactions, and have been used to treat liver diseases. It needs to be elucidated in terms of global gene expression whether Ai has an influence as an anti-inflammatory agent on the cultured human gingival fibroblast stimulated with lipopolysaccharide (LPS). This study investigated the anti-inflammatory changes of the genes by Ai using the Affymetrix genechip human gene 1.0 ST array when the cultured human gingival fibroblast was treated with LPS. It was observed that the inflammation- and immune response-related genes were activated by LPS challenge in the cultured human gingival fibroblast. The array analysis showed that 65 of the 344 genes up-regulated by LPS stimulation, when compared to the control, were down-regulated by the Ai treatment. A number of inflammation- and immune response-related genes of the 65 genes were found. In addition, 78 of the 164 genes down-regulated by the LPS, when compared to the control, were up-regulated by the Ai treatment. The regulatory patterns of the representative genes were correlated with the real-time RT-PCR analysis. The Ai extract and its specific components, scopolin and scopoletin, significantly hindered the production of inflammatory mediators such as IL-6, TNF-α and nitrite in the LPS-challenged fibroblast. This study suggests that Ai can comprehensively inhibit the activation of the inflammation- and immune response-related genes and the inflammatory mediators in the human gingival fibroblast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, H., Kim, J. Y., Lee, H. J., Kim, Y. K., and Ryu, J. H., Inhibitors of inducible nitric oxide synthase expression from Artemisia iwayomogi. Arch. Pharm. Res., 26, 301–305 (2003).

    Article  PubMed  CAS  Google Scholar 

  • An, J. H., Lee, S. Y., Jeon, J. Y., Cho, K. G., Kim, S. U., and Lee, M. A., Identification of gliotropic factors that induce human stem cell migration to malignant tumor. J. Proteome Res., 8, 2873–2881 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Bachvarov, D. R., Hess, J. F., Menke, J. G., Larrivée, J. F., and Marceau, F., Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1). Genomics, 33, 374–381 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Bauer, A. K., Dixon, D., DeGraff, L. M., Cho, H. Y., Walker, C. R., Malkinson, A. M., and Kleeberger, S. R., Toll-like receptor 4 in butylated hydroxytoluene-induced mouse pulmonary inflammation and tumorigenesis. J. Natl. Cancer Inst., 97, 1778–1781 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Bauer, A. K., Fostel, J., Degraff, L. M., Rondini, E. A., Walker, C., Grissom, S. F., Foley, J., and Kleeberger, S. R., Transcriptomic analysis of pathways regulated by tolllike receptor 4 in a murine model of chronic pulmonary inflammation and carcinogenesis. Mol. Cancer, 8, 107 (2009).

    Article  PubMed  Google Scholar 

  • Beikler, T., Peters, U., Prior, K., Eisenacher, M., and Flemmig, T. F., Gene expression in periodontal tissues following treatment. BMC Med. Genomics, 1, 30 (2008).

    Article  PubMed  Google Scholar 

  • Bissonnette, E. Y., Tremblay, G. M., Turmel, V., Pirotte, B., and Reboud-Ravaux, M., Coumarinic derivatives show anti-inflammatory effects on alveolar macrophages, but their anti-elastase activity is essential to reduce lung inflammation in vivo. Int. Immunopharmacol., 9, 49–54 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Cao, W., Tang, S., Yuan, H., Wang, H., Zhao, X., and Lu, H., Mycobacterium tuberculosis antigen Wag31 induces expression of C-chemokine XCL2 in macrophages. Curr. Microbiol., 57, 189–194 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Deiteren, K., Hendriks, D., Scharpé, S., and Lambeir, A. M., Carboxypeptidase M: Multiple alliances and unknown partners. Clin. Chim. Acta, 399, 24–39 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Ding, Y., Liang, C., Yang, S. Y., Ra, J. C., Choi, E. M., Kim, J. A., and Kim, Y. H., Phenolic compounds from Artemisia iwayomogi and their effects on osteoblastic MC3T3-E1 cells. Biol. Pharm. Bull., 33, 1448–1453 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw, M. J., Wilson, J. L., and Balkwill, F. R., Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur. J. Immunol., 32, 2393–2400 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Han, X. and Amar, S., Identification of genes differentially expressed in cultured human periodontal ligament fibroblasts vs. human gingival fibroblasts by DNA microarray analysis. J. Dent. Res., 81, 399–405 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hwang, J. S., Ji, H. J., Koo, K. A., Lee, N. H., Yeo, H. K., Cheong, S. W., Park, J. H., Oh, G. S., Yoon, C. S., and Youn, H. J., AIP1, a water-soluble fraction from Artemisia iwayomogi, suppresses thymocyte apoptosis in vitro and down-regulates the expression of Fas gene. Biol. Pharm. Bull., 28, 921–924 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Hwang, S. H., Choi, Y. G., Jeong, M. Y., Hong, Y. M., Lee, J. H., and Lim, S., Microarray analysis of gene expression profile by treatment of Cinnamomi Ramulus in lipopolysaccharide-stimulated BV-2 cells. Gene, 443, 83–90 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Jeong, M. Y., Kim, Y. H., Lee, N. K., Lee, J. Y., Herr, Y., Lee, J. H., and Lim, S., Antimicrobial effect on the periodontal pathogens and anti-inflammatory effect of Eriobotryae Folium. J. Korean Orient. Med., 29, 182–192 (2008).

    Google Scholar 

  • Kim, A. R., Zou, Y. N., Park, T. H., Shim, K. H., Kim, M. S., Kim, N. D., Kim, J. D., Bae, S. J., Choi, J. S., and Chung, H. Y., Active components from Artemisia iwayomogi displaying ONOO(−) scavenging activity. Phytother. Res., 18, 1–7 (2004).

    Article  PubMed  Google Scholar 

  • Kim, S. H., Choi, C. H., Kim, S. Y., Eun, J. S., and Shin, T. Y., Anti-allergic effects of Artemisia iwayomogi on mast cell-mediated allergy model. Exp. Biol. Med., 230, 82–88 (2005).

    CAS  Google Scholar 

  • Krayer, J. W., Leite, R. S., and Kirkwood, K. L., Non-surgical chemotherapeutic treatment strategies for the management of periodontal diseases. Dent. Clin. North Am., 54, 13–33 (2010).

    Article  PubMed  Google Scholar 

  • Lang, R., Hammer, M., and Mages, J., DUSP meet immunology: dual specificity MAPK phosphatases in control of the inflammatory response. J. Immunol., 177, 7497–7504 (2006).

    PubMed  CAS  Google Scholar 

  • Lee, J. A., Sung, H. N., Jeon, C. H., Gill, B. C., Oh, G. S., Youn, H. J., and Park, J. H., A carbohydrate fraction, AIP1 from Artemisia iwayomogi suppresses pulmonary eosinophilia and Th2-type cytokine production in an ovalbumin-induced allergic asthma. Down-regulation of TNF-α expression in the lung. Int. Immunopharmacol., 8, 117–125 (2008a).

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. A., Sung, H. N., Jeon, C. H., Gill, B. C., Oh, G. S., Youn, H. J., and Park, J. H., AIP1, a carbohydrate fraction from Artemisia iwayomogi, modulates the functional differentiation of bone marrow-derived dendritic cells. Int. Immunopharmacol., 8, 534–541 (2008b).

    Article  PubMed  CAS  Google Scholar 

  • Muschietti, L., Gorzalczany, S., Ferraro, G., Acevedo, C., and Martino, V., Phenolic compounds with anti-inflammatory activity from Eupatorium buniifolium. Planta Med., 67, 743–744 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Pan, R., Dai, Y., Gao, X., and Xia, Y., Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvantinduced rat arthritis by inhibiting inflammation and angiogenesis. Int. Immunopharmacol., 9, 859–869 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Proudfoot, A. E., de Souza, A. L., and Muzio, V., The use of chemokine antagonists in EAE models. J. Neuroimmunol., 198, 27–30 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Ryu, J. H., Ahn, H., Kim, J. Y., and Kim, Y. K., Inhibitory activity of plant extracts on nitric oxide synthesis in LPSactivated macrophages. Phytother. Res., 17, 485–489 (2003).

    Article  PubMed  Google Scholar 

  • Schulze-Topphoff, U., Prat, A., Prozorovski, T., Siffrin, V., Paterka, M., Herz, J., Bendix, I., Ifergan, I., Schadock, I., Mori, M. A., Van Horssen, J., Schröter, F., Smorodchenko, A., Han, M. H., Bader, M., Steinman, L., Aktas, O., and Zipp, F., Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat. Med., 15, 788–793 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Shin, K. M., Kim, I. T., Park, Y. M., Ha, J., Choi, J. W., Park, H. J., Lee, Y. S., and Lee, K. T., Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-alpha production. Biochem. Pharmacol., 68, 2327–2336 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Shin, T. Y., Park, J. S., and Kim, S. H., Artemisia iwayomogi inhibits immediate-type allergic reaction and inflammatory cytokine secretion. Immunopharmacol. Immunotoxicol., 28, 421–430 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Stievano, L., Piovan, E., and Amadori, A., C and CX3C chemokines: cell sources and physiopathological implications. Crit. Rev. Immunol., 24, 205–228 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Taillé, C., Guénégou, A., Almolki, A., Piperaud, M., Leynaert, B., Vuillaumier, S., Neukirch, F., Boczkowski, J., Aubier, M., Benessiano, J., and Crestani, B., ETB receptor polymorphism is associated with airway obstruction. BMC Pulm. Med., 7, 5 (2007).

    Article  PubMed  Google Scholar 

  • Wang, H. W., Lin, C. P., Chiu, J. H., Chow, K. C., Kuo, K. T., Lin, C. S., and Wang, L. S., Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int. J. Cancer, 120, 2019–2027 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Wang, P. L., Ohura, K., Fujii, T., Oido-Mori, M., Kowashi, Y., Kikuchi, M., Suetsugu, Y., and Tanaka, J., DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem. Biophys. Res. Commun., 305, 970–973 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Yang, M. D., Wu, C. C., Chiou, S. H., Chiu, C. F., Lin, T. Y., Chiang, I. P., and Chow, K. C., Reduction of dihydrodiol dehydrogenase expression in resected hepatocellular carcinoma. Oncol. Rep., 10, 271–276 (2003).

    PubMed  CAS  Google Scholar 

  • Yoshida, T., Imai, T., Kakizaki, M., Nishimura, M., Takagi, S., and Yoshie, O., Identification of single C motif-1/lymphotactin receptor XCR1. J. Biol. Chem., 273, 16551–16554 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Tan, F., Zhang, Y., and Skidgel, R. A., Carboxypeptidase M and kinin B1 receptors interact to facilitate efficient b1 signaling from B2 agonists. J. Biol. Chem., 283, 7994–8004 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Blattman, J. N., Kennedy, N. J., Duong, J., Nguyen, T., Wang, Y., Davis, R. J., Greenberg, P. D., Flavell, R. A., and Dong, C., Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature, 430, 793–797 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YG., Yeo, S., Kim, SH. et al. Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: Microarray analysis. Arch. Pharm. Res. 35, 549–563 (2012). https://doi.org/10.1007/s12272-012-0319-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0319-0

Key words

Navigation