Skip to main content
Log in

Moxifloxacin-gelrite In Situ ophthalmic gelling system against photodynamic therapy for treatment of bacterial corneal inflammation

  • Research Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, six in situ gelling formulations based on Gelrite were prepared and evaluated for the retained ophthalmic delivery of Moxifloxacin (Mox). The effectiveness of the best developed formula G5 was compared with photodynamic therapy (PDT), the recent expanding approach for the treatment of ophthalmologic disorders after the assessment of optimum photodynamic inactivation parameters that permit efficient pathogens eradication. It was found that, Staphylococcus aureus (S. aureus) (Gram-positive) was more susceptible to effective lethal photosensitization that reaches 93.5% reduction in viable count than Escherichia coli (E. coli) (Gramnegative) of 76.1% using 3 mg/mL Hematoporphyrin (HP), illuminated by 630 nm Light Emitting Diode (LED) at 9 J/cm2 and incubated for 15 min. Following topical instillation of G5 to rabbits corneas, higher amount of Mox was retained in the aqueous humor up to 24 h with significant 6-fold increase in the Cmax and AUC(0-∞) compared to vigamox® commercial eye drops. After post corneal infection with S. aureus, both approaches were effectively treating the infection without causing ocular irritation or collateral damage to corneal tissue where G5 showed remarkable improvement after four days compared to seven days of PDT treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, Y. and Lehmussaari, K., Industrial perspective in ocular drug delivery. Adv. Drug Deliv. Rev., 58, 1258–1268 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Al-Kassas, R. S. and El-Khatib, M. M., Ophthalmic controlled release in situ gelling systems for ciprofloxacin based on polymeric carriers. Drug Deliv., 16, 145–152 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Andrews, G. P., Laverty, T. P., and Jones, D. S., Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm., 71, 505–518 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Anumolu, S. S., Singh, Y., Gao, D., Stein, S., and Sinko, P. J., Design and evaluation of novel fast forming pilocarpine-loaded ocular hydrogels for sustained pharmacological response. J. Control. Release, 137, 152–159 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Badawi, A. A., El-Laithy, H. M., El Qidra, R. K., El Mofty, H., and El dally, M., Chitosan based nanocarriers for indomethacin ocular delivery. Arch. Pharm. Res., 31, 1040–1049 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Bajaj, I. B., Survase, S. A., Saudagar, P. S., and Singhal, R. S., Gellan gum: fermentative production, downstream processing and applications. Food Technol. Biotechnol., 45, 341–354 (2007).

    CAS  Google Scholar 

  • Balasubramaniam, J. and Pandit, J. K., Ion-activated in situ gelling systems for sustained ophthalmic delivery of ciprofloxacin hydrochloride. Drug Deliv., 10, 185–191 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Bertoloni, G., Lauro, F. M., Cortella, G., and Merchat, M., Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim. Biophys. Acta, 1475, 169–174 (2000).

    PubMed  CAS  Google Scholar 

  • Borchard, G., Lueßen, H. L., de Boer, A. G., Verhoef, J. C., Lehr, C.-M., and Junginger, H. E., The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control. Release, 39, 131–138 (1996).

    Article  CAS  Google Scholar 

  • Bourlais, C. L., Acar, L., Zia, H., Sado, P. A., Needham, T., and Leverge, R., Ophthalmic drug delivery systems-recent advances. Prog. Retin. Eye Res., 17, 33–58 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Carlfors, J., Edsman, K., Petersson, R., and Jörnving, K., Rheological evaluation of Gelrite in situ gels for ophthalmic use. Eur. J. Pharm. Sci., 6, 113–119 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Castano, A. P., Demidova, T. N., and Hamblin, M. R., Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn. Ther., 1, 279–293 (2004).

    Article  CAS  Google Scholar 

  • Charoo, N. A., Kohli, K., and Ali, A., Preparation of in situforming ophthalmic gels of ciprofloxacin hydrochloride for the treatment of bacterial conjunctivitis: in vitro and in vivo studies. J. Pharm. Sci., 92, 407–413 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Constantinou, M., Daniell, M., Snibson, G. R., Vu, H. T., and Taylor, H. R., Clinical efficacy of moxifloxacin in the treatment of bacterial keratitis: a randomized clinical trial. Ophthalmology, 114, 1622–1629 (2007).

    Article  PubMed  Google Scholar 

  • Dai, T., Tegos, G. P., Zhiyentayev, T., Mylonakis, E., and Hamblin, M. R., Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg. Med., 42, 38–44 (2010).

    Article  PubMed  Google Scholar 

  • de Almeida, J. M., Theodoro, L. H., Bosco, A. F., Nagata, M. J., Bonfante, S., and Garcia, V. G., Treatment of experimental periodontal disease by photodynamic therapy in rats with diabetes. J. Periodontol., 79, 2156–2165 (2008).

    Article  PubMed  Google Scholar 

  • Deasy, P. B. and Quigley, K. J., Rheological evaluation of deacetylated gellan gum (Gelrite) for pharmaceutical use. Int. J. Pharm., 73, 117–123 (1991).

    Article  CAS  Google Scholar 

  • Demidova, T. N., Gad, F., Zahra, T., Francis, K. P., and Hamblin, M. R., Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. J. Photochem. Photobiol. B, 81, 15–25 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Donnelly, R. F., McCarron, P. A., and Tunney, M. M., Antifungal photodynamic therapy. Microbiol. Res., 163, 1–12 (2008).

    Article  PubMed  CAS  Google Scholar 

  • El-Adly, A. A., Photoactive anionic porphyrin derivative against Gram-positive and Gram-negative bacteria. J. Appl. Sci. Res., 4, 1817–1821 (2008).

    CAS  Google Scholar 

  • El-Kamel, A. H., In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int. J. Pharm., 241, 47–55 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Fernandes, L. A., de Almeida, J. M., Theodoro, L. H., Bosco, A. F., Nagata, M. J., Martins, T. M., Okamoto, T., and Garcia, V. G., Treatment of experimental periodontal disease by photodynamic therapy in immunosuppressed rats. J. Clin. Periodontol., 36, 219–228 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Gan, L., Gan, Y., Zhu, C., Zhang, X., and Zhu, J., Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int. J. Pharm., 365, 143–149 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Ganz, R. A., Viveiros, J., Ahmad, A., Ahmadi, A., Khalil, A., Tolkoff, M. J., Nishioka, N. S., and Hamblin, M. R., Helicobacter pylori in patients can be killed by visible light. Lasers Surg. Med., 36, 260–265 (2005).

    Article  PubMed  Google Scholar 

  • George, S., Hamblin, M. R., and Kishen, A., Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochem. Photobiol. Sci., 8, 788–795 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Giusti, J. S., Santos-Pinto, L., Pizzolito, A. C., Helmerson, K., Carvalho-Filho, E., Kurachi, C., and Bagnato, V. S., Antimicrobial photodynamic action on dentin using a lighte-mitting diode light source. Photomed. Laser Surg., 26, 281–287 (2008).

    Article  PubMed  Google Scholar 

  • Hamblin, M. R., O’Donnell, D. A., Murthy, N., Rajagopalan, K., Michaud, N., Sherwood, M. E., and Hasan, T., Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J. Antimicrob. Chemother., 49, 941–951 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hamblin, M. R. and Hasan, T., Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci., 3, 436–450 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, V. and Keipert, S., Physico-chemical, in vitro and in vivo characterization of polymers for ocular use. Pharmazie, 55, 440–443 (2000).

    PubMed  CAS  Google Scholar 

  • Hassan, E. E. and Gallo, J. M., A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm. Res., 7, 491–495 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Hongcharu, W., Taylor, C. R., Chang, Y., Aghassi, D., Suthamjariya, K., and Anderson, R. R., Topical ALAphotodynamic therapy for the treatment of acne vulgaris. J. Invest. Dermatol., 115, 183–192 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., Terakawa, M., Zhiyentayev, T., Huang, Y. Y., Sawayama, Y., Jahnke, A., Tegos, G. P., Wharton, T., and Hamblin, M. R., Innovative cationic fullerenes as broadspectrum light-activated antimicrobials. Nanomedicine, 6, 442–452 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, S., Suzuki, K., Fukuda, E., Arihara, K., Yamamoto, Y., Mukai, T., and Itoh, M., Photodynamic antimicrobial activity of avian eggshell pigments. FEBS Lett., 584, 770–774 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Jarvinen, K., Jarvinen, T., and Urtti, A., Ocular absorption following topical delivery. Adv. Drug Deliv. Rev., 16, 3–19 (1995).

    Article  Google Scholar 

  • Jori, G., Fabris, C., Soncin, M., Ferro, S., Coppellotti, O., Dei, D., Fantetti, L., Chiti, G., and Roncucci, G., Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med., 38, 468–481 (2006).

    Article  PubMed  Google Scholar 

  • Kalam, M. A., Sultana, Y., Samad, A., Ali, A., Aqil, M., Sharma, M., and Mishra, A. K., Gelrite-based in vitro gelation ophthalmic drug delivery system of gatifloxacin. J. Dispers. Sci. Technol., 29, 89–96 (2008).

    Article  CAS  Google Scholar 

  • Kao, H.-J., Lo, Y.-L., Vong, W.-J., Lin, Y.-J., and Lin, H.-R., Treating allergic conjunctivitis using in situ polyelectrolyte gelling systems. J. Biomater. Sci. Polym. Ed., 17, 1191–1205 (2006).

    Article  CAS  Google Scholar 

  • Kaur, I. P., Singh, M., and Kanwar, M., Formulation and evaluation of ophthalmic preparations of acetazolamide. Int. J. Pharm., 199, 119–127 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kaur, I. P., Garg, A., Singla, A. K., and Aggarwal, D., Vesicular systems in ocular drug delivery: an overview. Int. J. Pharm., 269, 1–14 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kim, D. H., Stark, W. J., O’Brien, T. P., and Dick, J. D., Aqueous penetration and biological activity of moxifloxacin 0.5% ophthalmic solution and gatifloxacin 0.3% solution in cataract surgery patients. Ophthalmology, 112, 1992–1996 (2005).

    Article  PubMed  Google Scholar 

  • Kömerik, N., Nakanishi, H., MacRobert, A. J., Henderson, B., Speight, P., and Wilson, M., In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob. Agents Chemother., 47, 932–940 (2003).

    Article  PubMed  Google Scholar 

  • Kubo, W., Miyazaki, S., and Attwood, D., Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int. J. Pharm., 258, 55–64 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts, S. A., Demidova, T. N., Aalders, M. C., Hasan, T., and Hamblin, M. R., Photodynamic therapy for Staphylococcus aureus infected burn wounds in mice. Photochem. Photobiol. Sci., 4, 503–509 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Langlois, M. H., Montagut, M., Dubost, J. P., Grellet, J., and Saux, M. C., Protonation equilibrium and lipophilicity of moxifloxacin. J. Pharm. Biomed. Anal., 37, 389–393 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lasocki, K., Szpakowska, M., Grzybowski, J., and Graczyk, A., Examination of antibacterial activity of the photoactivated arginine haematoporphyrin derivative. Pharmacol. Res., 39, 181–184 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lembo, A. J., Ganz, R. A., Sheth, S., Cave, D., Kelly, C., Levin, P., Kazlas, P. T., Baldwin, P. C., 3rd, Lindmark, W. R., McGrath, J. R., and Hamblin M. R., Treatment of Helicobacter pylori infection with intra-gastric violet light phototherapy: a pilot clinical trial. Lasers Surg. Med., 41, 337–344 (2009).

    Article  PubMed  Google Scholar 

  • Levine, J. M., Noecker, R. J., Lane, L. C., Herrygers, L., Nix, D., and Snyder, R. W., Comparative penetration of moxifloxacin and gatifloxacin in rabbit aqueous humor after topical dosing. J. Cataract Refract. Surg., 30, 2177–282 (2004).

    Article  PubMed  Google Scholar 

  • Li, D. Q., Chen, Z., Song, X. J., Luo, L., and Pflugfelder, S. C., Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci., 45, 4302–4311 (2004).

    Article  PubMed  Google Scholar 

  • Lin, H. R. and Sung, K. C., Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J. Control. Release, 69, 379–388 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lipovsky, A., Nitzan, Y., Friedmann, H., and Lubart, R., Sensitivity of Staphylococcus aureus strains to broadband visible light. Photochem. Photobiol., 85, 255–260 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Liu, J., Zhang, X., Zhang, R., Huang, Y., and Wu, C., In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech, 11, 610–620 (2010).

    Article  PubMed  Google Scholar 

  • Liu, Z., Li, J., Nie, S., Liu, H., Ding, P., and Pan, W., Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm., 315, 12–17 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, A., The use of mucoadhesive polymers in ocular drug delivery. Adv. Drug Deliv. Rev., 57, 1595–1639 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Luo, L., Li, D. Q., Corrales, R. M., and Pflugfelder, S. C., Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens, 31, 186–193 (2005).

    Article  PubMed  Google Scholar 

  • Ma, W. D., Xu, H., Wang, C., Nie, S. F., and Pan, W. S., Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int. J. Pharm., 350, 247–256 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Maclean, M., MacGregor, S. J., Anderson, J. G., and Woolsey, G., Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol., 75, 1932–1937 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Nanjawade, B. K., Manvi, F. V., and Manjappa, A. S., In situ-forming hydrogels for sustained ophthalmic drug delivery. J. Control. Release, 122, 119–134 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Neupane, J., Ghimire, S., Shakya, S., Chaudhary, L., and Shrivastava, V. P., Effect of light emitting diodes in the photodynamic therapy of rheumatoid arthritis. Photodiagnosis Photodyn. Ther., 7, 44–49 (2010).

    Article  PubMed  Google Scholar 

  • Nisnevitch, M., Nakonechny, F., and Nitzan, Y., Photodynamic antimicrobial chemotherapy by liposome-encapsulated water-soluble photosensitizers. Russ. J. Bioorganic Chem., 36, 363–369 (2010).

    Article  CAS  Google Scholar 

  • Nitzan, Y., Salmon-Divon, M., Shporen, E., and Malik, Z., ALA induced photodynamic effects on gram positive and negative bacteria. Photochem. Photobiol. Sci., 3, 430–435 (2004).

    Article  CAS  Google Scholar 

  • Ocaña, J. A., Barragán, F. J., and Callejón, M., Spectrofluorimetric determination of moxifloxacin in tablets, human urine and serum. Analyst, 125, 2322–2325 (2000).

    Article  PubMed  Google Scholar 

  • Omar, G. S., Wilson, M., and Nair, S. P., Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light. BMC Microbiol., 8, 111–120 (2008).

    Article  PubMed  Google Scholar 

  • O’Riordan, K., Akilov, O. E., and Hasan, T., The potential for photodynamic therapy in the treatment of localized infections. Photodiagnosis Photodyn. Ther., 2, 247–262 (2005).

    Article  Google Scholar 

  • Pawar, P. K. and Majumdar, D. K., Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas. AAPS PharmSciTech, 7, E13 (2006).

    Article  PubMed  Google Scholar 

  • Peloi, L. S., Soares, R. R., Biondo, C. E., Souza, V. R., Hioka, N., and Kimura, E., Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J. Biosci., 33, 231–237 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Qi, H., Li, L., Huang, C., Li, W., and Wu, C., Optimization and physicochemical characterization of thermosensitive poloxamer gel containing puerarin for ophthalmic use. Chem. Pharm. Bull. (Tokyo), 54, 1500–1507 (2006).

    Article  CAS  Google Scholar 

  • Qi, H., Chen, W., Huang, C., Li, L., Chen, C., Li, W., and Wu, C., Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int. J. Pharm., 337, 178–187 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Rathore, M. S. and Majumdar, D. K., Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops. AAPS PharmSciTech, 7, 57 (2006).

    Article  PubMed  Google Scholar 

  • Razek, T. M. A., El-Baqary, R. I., and Ramadan, A. E., Fluorimetric determination of gatifloxacin in aqueous, pure and pharmaceutical formulations. Anal. Lett., 41, 417–423 (2008).

    Article  CAS  Google Scholar 

  • Ritger, P. L. and Peppas, N. A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release, 5, 37–42 (1987).

    Article  CAS  Google Scholar 

  • Robertson, S. M., Curtis, M. A., Schlech, B. A., Rusinko, A., Owen, G. R., Dembinska, O., Liao, J., and Dahlin, D. C., Ocular pharmacokinetics of moxifloxacin after topical treatment of animals and humans. Surv. Ophthalmol., 50Suppl 1, S32–S45 (2005).

    Article  PubMed  Google Scholar 

  • Roy, S., Pal, K., Anis, A., Pramanik, K., and Prabhakar, B., Polymers in mucoadhesive drug delivery system: a brief note. Des. Monomers Polym., 12, 483–495 (2009).

    Article  CAS  Google Scholar 

  • Rozier, A., Mazuel, C., Grove, J., and Plazonnet, B., Gelrite®: a novel, ion-activated in situ gelling polymer for ophthalmic vehicles. Effect on bioavailability of timolol. Int. J. Pharm., 57, 163–168 (1989).

    Article  CAS  Google Scholar 

  • Salem, H., Spectrofluorimetric, atomic absorption spectrometric and spectrophotometric determination of some fluoroquinolones. Am. J. Appl. Sci., 2, 719–729 (2005).

    Article  CAS  Google Scholar 

  • Sanzgiri, Y. D., Maschi, S., Crescenzi, V., Calligaro, L., Topp, E. M., and Stella, V. J., Gellan-based systems for ophthalmic sustained delivery of methylprednisolone (MP). J. Control. Release, 26, 195–201 (1993).

    Article  CAS  Google Scholar 

  • Schrage, N., Wuestemeyer, H., and Langefeld, S., Do different osmolar solutions change the epithelial surface of the healthy rabbit cornea? Graefes Arch. Clin. Exp. Ophthalmol., 242, 668–673 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Sensoy, D., Cevher, E., Sarici, A., Yilmaz, M., Ozdamar, A., and Bergisşadi, N., Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model. Eur. J. Pharm. Biopharm., 72, 487–495 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Sharman, W. M., Allen, C. M., and van Lier, J. E., Photodynamic therapeutics: basic principles and clinical applications. Drug Discov. Today, 4, 507–517 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Singh, B., Chauhan, G. S., Sharma, D. K., and Chauhan, N., The release dynamics of salicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide based hydrogels (II). Carbohydr. Polym., 67, 559–565 (2007).

    Article  CAS  Google Scholar 

  • Solomon, R., Donnenfeld, E. D., Perry, H. D., Snyder, R. W., Nedrud, C., Stein, J., and Bloom, A., Penetration of topically applied gatifloxacin 0.3%, moxifloxacin 0.5%, and ciprofloxacin 0.3% into the aqueous humor. Ophthalmology, 112, 466–469 (2005).

    Article  PubMed  Google Scholar 

  • Srividya, B., Cardoza, R. M., and Amin, P. D., Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J. Control. Release, 73, 205–211 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Stahl, U., Willcox, M. D., Naduvilath, T., and Stapleton, F., Influence of tear film and contact lens osmolality on ocular comfort in contact lens wear. Optom. Vis. Sci., 86, 857–867 (2009).

    Article  PubMed  Google Scholar 

  • Stroman, D. W., Dajcs, J. J., Cupp, G. A., and Schlech, B. A., In vitro and in vivo potency of moxifloxacin and moxifloxacin ophthalmic solution 0.5%, a new topical fluoroquinolone. Surv. Ophthalmol., 50Suppl 1, S16–S31 (2005).

    Article  PubMed  Google Scholar 

  • Sultana, Y., Aqil, M., and Ali, A., Ion-activated, Gelrite-based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Deliv., 13, 215–219 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Teichert, M. C., Jones, J. W., Usacheva, M. N., and Biel, M. A., Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 93, 155–160 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Torkildsen, G. and O’Brien, T. P., Conjunctival tissue pharmacokinetic properties of topical azithromycin 1% and moxifloxacin 0.5% ophthalmic solutions: a single-dose, randomized, open-label, active-controlled trial in healthy adult volunteers. Clin. Ther., 30, 2005–2014 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Urtti, A., Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev., 58, 1131–1135 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Usacheva, M. N., Teichert, M. C., and Biel, M. A., Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms. Lasers Surg. Med., 29, 165–173 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Vandamme, T. F. and Brobeck, L., Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release, 102, 23–38 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Wei, G., Xu, H., Ding, P. T., Li, S. M., and Zheng, J. M., Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J. Control. Release, 83, 65–74 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Weyenberg, W., Vermeire, A., Dhondt, M. M., Adriaens, E., Kestelyn, P., Remon, J. P., and Ludwig, A., Ocular bioerodible minitablets as strategy for the management of microbial keratitis. Invest. Ophthalmol. Vis. Sci., 45, 3229–3233 (2004).

    Article  PubMed  Google Scholar 

  • Wiegell, S. R. and Wulf, H. C., Photodynamic therapy of acne vulgaris using methyl aminolaevulinate: a blinded, randomized, controlled trial. Br. J. Dermatol., 154, 969–976 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wong, T. W, Wang, Y. Y., Sheu, H. M., and Chuang, Y. C., Bactericidal effects of toluidine blue-mediated photodynamic action on Vibrio vulnificus. Antimicrob. Agents Chemother., 49, 895–902 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Wu, C., Qi, H., Chen, W., Huang, C., Su, C., Li, W., and Hou, S., Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi, 127, 183–191 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Yoon, K. C., Ahn, K. Y., Lee, S. E., Kim, K. K., Im, S. K., Oh, H. J., Jeong, I. Y., Park, S. W., Park, Y. G., Nah, H. J., and Im, W. B., Experimental inhibition of corneal neovascularization by photodynamic therapy with verteporfin. Curr. Eye Res., 31, 215–224 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Zeina, B., Greenman, J., Purcell, W. M., and Das, B., Killing of cutaneous microbial species by photodynamic therapy. Br. J. Dermatol., 144, 274–278 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Zolfaghari, P. S., Packer, S., Singer, M., Nair, S. P., Bennett, J., Street, C., and Wilson, M., In vivo killing of Staphylococcus aureus using a light-activated antimicrobial agent. BMC Microbiol., 9, 27 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demiana I. Nesseem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Laithy, H.M., Nesseem, D.I., El-Adly, A.A. et al. Moxifloxacin-gelrite In Situ ophthalmic gelling system against photodynamic therapy for treatment of bacterial corneal inflammation. Arch. Pharm. Res. 34, 1663–1678 (2011). https://doi.org/10.1007/s12272-011-1011-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-1011-5

Key words

Navigation