Skip to main content
Log in

Inhibitory effects of chlorogenic acid on aldose reductase activity in vitro and cataractogenesis in galactose-fed rats

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Chlorogenic acid (5-O-caffeoylquinic acid, CA), a phenolic compound found ubiquitously in plants, has antidiabetic effect in diabetic animal models. In this study, we investigated the inhibitory effect of CA on diabetic cataractogenesis. We evaluated the aldose reductase (AR) activity during cataract development in 50% galactose-fed rats, an animal model of sugar cataract. Galactose-fed rats were treated orally with CA (10 and 50 mg/kg body weight) once a day for 2 weeks. In vehicle-treated galactose-fed rats, lens opacity was increased, and lens fiber swelling and membrane rupture were observed. In addition, AR protein was highly expressed in lens epithelial cells and lens cortical fibers of galactose-fed rats. However, CA inhibited the rat AR activity in vitro, and the administration of CA prevented the development of sugar cataract through the inhibition of AR activity. These observations suggest that CA is useful for the treatment of sugar cataract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagi, Y., Kador, P. F., and Kinoshita, J. H., Immunohistochemical localization for aldose reductase in diabetic lenses. Invest. Ophthalmol. Vis. Sci., 28, 163–167 (1987).

    PubMed  CAS  Google Scholar 

  • Andrade-Cetto, A. and Wiedenfeld, H., Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J. Ethnopharmacol., 78, 145–149 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ao, S., Shingu, Y., Kikuchi, C., Takano, Y., Nomura, K., Fujiwara, T., Ohkubo, Y., Notsu, Y., and Yamaguchi, I., Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat. Metabolism, 40, 77–87 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Costantino, L., Rastelli, G., Vianello, P., Cignarella, G., and Barlocco, D., Diabetes complications and their potential prevention: aldose reductase inhibition and other approaches. Med. Res. Rev., 19, 3–23 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Harries, W., Tsui, J., and Unakar, N. J., Ultrastructural cytochemistry: effect of Sorbinil on arylsulfatases in cataractous lenses. Curr. Eye Res., 4, 657–666 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Arellano, A., Aguilar-Santamaría, L., García-Hernández, B., Nicasio-Torres, P., and Tortoriello, J., Clinical trial of Cecropia obtusifolia and Marrubium vulgare leaf extracts on blood glucose and serum lipids in type 2 diabetics. Phytomedicine, 11, 561–566 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Huang, R., Shi, F., Lei, T., Song, Y., Hughes, C. L., and Liu, G., Effect of the isoflavone genistein against galactoseinduced cataracts in rats. Exp. Biol. Med., 232, 118–125 (2007).

    CAS  Google Scholar 

  • Jung, H. A., Islam, M. D., Kwon, Y. S., Jin, S. E., Son, Y. K., Park, J. J., Sohn, H. S., and Choi, J. S., Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem. Toxicol., 49, 376–384 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Kador, P. F., Inoue, J., Secchi, E. F., Lizak, M. J., Rodriguez, L., Mori, K., Greentree, W., Blessing, K., Lackner, P. A., and Sato, S., Effect of sorbitol dehydrogenase inhibition on sugar cataract formation in galactose-fed and diabetic rats. Exp. Eye Res., 67, 203–208 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. S., Kim, N. H., Jung, D. H., Jang, D. S., Lee, Y. M., Kim, J. M., and Kim, J. S., Genistein inhibits aldose reductase activity and high glucose-induced TGF-beta2 expression in human lens epithelial cells. Eur. J. Pharmacol., 594, 18–25 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, J. H., Mechanisms initiating cataract formation. Proctor Lecture. Invest. Ophthalmol., 13, 713–724 (1974).

    PubMed  CAS  Google Scholar 

  • Kinoshita, J. H., Kador, P., and Catiles, M., Aldose reductase in diabetic cataracts. JAMA, 246, 257–261 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Kono, Y., Kashine, S., Yoneyama, T., Sakamoto, Y., Matsui, Y., and Shibata, H., Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem., 62, 22–27 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. Y., Chung, S. K., and Chung, S. S., Demonstration that polyol accumulation is responsible for diabetic cataract by the use of transgenic mice expressing the aldose reductase gene in the lens. Proc. Natl. Acad. Sci. U. S. A., 92, 2780–2784 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Liu, G., Hale, G. E., and Hughes, C. L., Galactose metabolism and ovarian toxicity. Reprod. Toxicol., 14, 377–384 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lou, M. F., Dickerson, J. E., Jr., Garadi, R., and York, B. M., Jr., Glutathione depletion in the lens of galactosemic and diabetic rats. Exp. Eye Res., 46, 517–530 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Matsui, T., Nakamura, Y., Ishikawa, H., Matsuura, A., and Kobayashi, F., Pharmacological profiles of a novel aldose reductase inhibitor, SPR-210, and its effects on streptozotocin-induced diabetic rats. Jpn. J. Pharmacol., 64, 115–124 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Miwa, I., Kanbara, M., Wakazono, H., and Okuda, J., Analysis of sorbitol, galactitol, and myo-inositol in lens and sciatic nerve by high-performance liquid chromatography. Anal. Biochem., 173, 39–44 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, K., Kato, N., Matsubara, A., Nakano, K., and Kurono, M., Effects of a new aldose reductase inhibitor, (2S, 4S)-6-fluoro-2′,5′-dioxospiro[chroman-4,4′-imidazolidine]-2-carboxamide (SNK-860), on the slowing of motor nerve conduction velocity and metabolic abnormalities in the peripheral nerve in acute streptozotocin-induced diabetic rats. Metabolism, 41, 1081–1086 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Nakai, N., Fujii, Y., Kobashi, K., and Nomura, K., Aldose reductase inhibitors: flavonoids, alkaloids, acetophenones, benzophenones, and spirohydantoins of chroman. Arch. Biochem. Biophys., 239, 491–496 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Oates, P. J. and Mylari, B. L., Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert Opin. Investig. Drugs, 8, 2095–2119 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Obrosova, I. G., Stevens, M. J., and Lang, H. J., Diabetesinduced changes in retinal NAD-redox status: pharmacological modulation and implications for pathogenesis of diabetic retinopathy. Pharmacology, 62, 172–180 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Patterson, J. W. and Bunting, K. W., Sugar cataracts, polyol levels and lens swelling. Doc. Ophthalmol., 20, 64–72 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Reddy, V. N., Schwass, D., Chakrapani, B., and Lim, C. P., Biochemical changes associated with the development and reversal of galactose cataracts. Exp. Eye Res., 23, 483–493 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez de Sotillo, D. V. and Hadley, M., Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J. Nutr. Biochem., 13, 717–726 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Simard-Duquesne, N., Greselin, E., Dubuc, J., and Dvornik, D., The effects of a new aldose reductase inhibitor (tolrestat) in galactosemic and diabetic rats. Metabolism, 34, 885–892 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Terashima, H., Hama, K., Yamamoto, R., Tsuboshima, M., Kikkawa, R., Hatanaka, I., and Shigeta, Y., Effects of a new aldose reductase inhibitor on various tissues in vitro. J. Pharmacol. Exp. Ther., 229, 226–230 (1984).

    PubMed  CAS  Google Scholar 

  • Tomlinson, D. R., Stevens, E. J., and Diemel, L. T., Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol. Sci., 15, 293–297 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Unakar, N. J. and Tsui, J. Y., Inhibition of galactose-induced alterations in ocular lens with sorbinil. Exp. Eye Res., 36, 685–694 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Unakar, N. J., Harries, W., and Tsui, J., Acid phosphatase II. Cytochemical localization in lenses of normal and galactose-fed rats. Exp. Eye Res., 40, 117–126 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sook Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, CS., Kim, J., Lee, Y.M. et al. Inhibitory effects of chlorogenic acid on aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Arch. Pharm. Res. 34, 847–852 (2011). https://doi.org/10.1007/s12272-011-0519-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0519-z

Key words

Navigation