Skip to main content
Log in

Improving the solubility and bioavailability of dihydroartemisinin by solid dispersions and inclusion complexes

  • Research Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Dihydroartemisinin (DHA) is a poorly water-soluble drug that displays low bioavailability after oral administration. Attempts have been made to improve the solubility of DHA. Yet, no information is available concerning improved bioavailability. This study aimed to improve the water solubility of DHA by two systems: solid dispersions with polyvinylpyrrolidone (PVPK30, PVPK25, PVPK15) and inclusion complexes with hydroxypropyl-β-cyclodextrin (HPβCD), as well as improving the bioavailability of both systems. The phase transition of DHA with hydrophilic polymers was evaluated by X-ray diffraction (XRD) and differential scanning calorimetery (DSC). DHA became amorphous in DHA-HPβCD complexes and showed more amorphous behavior in XRD analyses with rise in molecular weight of PVP. Melting onset temperature of DHA decreased, while DSC thermograms revealed the peak area and enhanced enthalpy change (DH) in solid dispersions as well as inclusion complexes. DHA solubility was enhanced 84-fold in DHA-HPβCD complexes and 50-times in DHA-PVPK30. The improved solubility using the four polymers was in the following order: HPβCD > PVPK30 > PVPK25 > PVPK15. Values of area under curve (AUC) and half life (t1/2) of DHA-PVPK30 were highest followed by DHA-HPβCD, DHA-PVPK15 and DHA-PVPK25. Vd/f of DHA-PVPK30 was 7-fold. DHA-HPβCD, DHA-PVPK15 and DHA-PVPK25 showed significantly different pharmacokinetic parameters compared with DHA solutions. The 95% confidence interval was meaningful in AUC and t1/2. Pharmacokinetic parameters revealed that all four-test preparations were significantly more bioavailable than DHA alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja, N., Katare, O. P., and Singh, B., Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur. J. Pharm. Biopharm., 65, 26–38 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Ambike, A., Mahadik, K. R., and Paradkar, A., Stability study of amorphous valdecoxib. Int. J. Pharm., 282, 151–162 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Andrews, G. P., AbuDiak, O. A., and Jones, D. S., Physicochemical characterization of hot melt extruded bicalutamidepolyvinylpyrrolidone solid dispersions. J. Pharm. Sci., 99, 1322–1335 (2010).

    PubMed  CAS  Google Scholar 

  • Ansari, M. T. and Sunderland, V. B., Solid dispersions of dihydroartemisinin in polyvinylpyrrolidone. Arch. Pharm. Res., 31, 390–398 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Ansari, M. T., Iqbal, I., and Sunderland, V. B., Dihydroartemisinin-cyclodextrin complexation: solubility and stability. Arch. Pharm. Res., 32, 155–165 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Ansari, M. T., Karim, S., Ranjha, N. M., Shah, N. H., and Muhammad, S. Physicochemical characterization of artemether solid dispersions with hydrophilic carriers by freeze dried and melt methods. Arch. Pharm. Res., 33, 901–910 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Ashton, M., Gordi, T., Trinh, N. H., Nguyen, D. S., Nguyen, T. N., Dinh, X. H., Johansson, M., and Le, D. C., Artemisinin pharmacokinetics in healthy adults 250, 500 and 1000 mg single oral doses. Biopharm. Drug Dispos., 19, 245–250 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Batty, K. T., Davis, T. M. E., Thu, L. T. A., Binh, T. Q., Anh, T. K., and Ilett, K. F., Selective high-performance liquid chromatographic determination artesunate and α- and β-dihydroartemisinin in patients with falciparum malaria. J. Chromatogr. B., 677, 345–350 (1996).

    Article  Google Scholar 

  • Batty, K. T., Ilett, K. F., and Davis, T. M., Protein binding and α:β anomer ratio of dihydroartemisinin in vivo. Br. J. Clin. Pharmacol., 57, 529–533 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bikiaris, D., Papageorgiou, G. Z., Stergiou, A., Pavlidou, E., Karavas, E., Kanaze, F., and Georgarakis, M., Physicochemical studies on solid dispersions of poorly water-soluble drugs: evaluation of capabilities and limitations of thermal analysis techniques. Thermochimica Acta, 439, 58–67 (2005).

    Article  CAS  Google Scholar 

  • Binh, T. Q., Ilett, K. F., Batty, K. T., Davis, T. M. E., Hung, N. C., Powell, S. M., Thu, L. T. A., Thien, H. V., Phuöng, H. L., and Phuong, V. D. B., Oral bioavailability of dihydroartemisinin in Vietnamese volunteers and in patients with falciparum malaria. Br. J. Clin. Pharmacol., 51, 541–546 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Cirri, M., Maestrelli, F., Corti, G., Furlanetto, S., and Mura, P., Simultaneous effect of cyclodextrin complexation, H, and hydrophilic polymers on naproxen solubilization. J. Pharm. Biomed. Anal., 42, 126–131 (2006).

    Article  PubMed  CAS  Google Scholar 

  • de Araujo, D. R., Tsuneda, S. S., Cereda, C. M. S., Carvalho, F. D. G. F., Preté, P. S. C., Fernandes, S. A., Yokaichiya, F., Franco, M. K. K. D., Mazzaro, I., Fraceto, L. F., de Braga, A. F. A., and de Paula, E., Development of pharmacological evaluation of ropivacaine-2-hydroxypropyl-β-cyclodextrin inclusion complex. Eur. J. Pharm. Sci., 33, 60–71 (2008).

    PubMed  Google Scholar 

  • de Vries, P. J. and Dien, T. K., Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drug, 52, 818–836 (1996).

    Article  Google Scholar 

  • Dordunoo, S. K. and Burt, H. M., Solubility and stability of taxol: effects of buffers and cyclodextrins. Int. J. Pharm., 133, 191–201 (1996).

    Article  CAS  Google Scholar 

  • Emara, L. H., Badr, R. M., and Elbary, A. A., Improving the dissolution and bioavailability of nifedipine using solid dispersions and solubilizers. Drug Dev. Ind. Pharm., 28, 795–807 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Esclusa-Diaz, M. T., Guimaraens-Méndez, M., Pérez-Marcos, M. B., Vila-Jato, J. L., and Torres-Labandeira, J. J., Characterization and in vitro dissolution behaviour of ketoconazole/β- and 2-hydroxypropyl-β-cyclodextrin inclusion compounds. Int. J. Pharm., 143, 203–210 (1996).

    Article  CAS  Google Scholar 

  • Fawaz, F., Bonini, F., Guyot. M., Bildet, J., Maury, M., and Lagueny, A. M., Bioavailability of norfloxacin from PEG 6000 solid dispersion and cyclodextrin inclusion complexes in rabbits. Int. J. Pharm., 132, 271–275 (1996).

    Article  CAS  Google Scholar 

  • Fernandes, C. M., Teresa Vieira, M., and Veiga, F. J. B., Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur. J. Pharm. Sci., 15, 79–88 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Heo, M. Y., Piao, Z. Z., Kim, T. W., Cao, Q. R., Kim, A., and Lee, B. J., Effect of solubilizing and microemulsifying excipients in polyethylene glycol 6000 solid dispersion on enhanced dissolution and bioavailability of ketoconazole. Arch. Pharm. Res., 28, 604–611 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, T. and Connors, K. A., Phase solubility techniques. Adv. Anal. Chem. Instrum., 4, 117–212 (1965).

    CAS  Google Scholar 

  • Illapakurthy, A. C., Sabnis, Y. A., Avery, B. A., Avery, M. A., and Wyandt, C. M., Interaction of artemisinin and its related compounds with hydroxypropyl-β-cyclodextrin in solution state: experimental and molecular-modeling studies. J. Pharm. Sci., 92, 649–655 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kabanov, A. V., Lemieux, P., Vinogradov, S., and Alakhov, V., Pluronic block copolymers: novel functional molecules for gene therapy. Adv. Drug Deliv. Rev., 54, 223–233 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Kang, J., Kumar, V., Yang, D., Chowdhury, P. R., and Hohl, R. J., Cyclodextrin complexation: influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur. J. Pharm. Sci., 15, 163–170 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Keoluangkhot, V., Green, M. D., Nyadong, L., Fernández, F. M., Mayxay, M., and Newton, P. N., Impaired clinical response in a patient with uncomplicated falciparum malaria who received poor-quality and underdosed intramuscular artemether. Am. J. Trop. Med. Hyg., 78, 552–555 (2008).

    PubMed  CAS  Google Scholar 

  • Li, Q. G., Peggins, J. O., Fleckenstein, L. L., Masonic, K., Heiffer, M. H., and Brewer, T. G., The pharmacokinetics and bioavailability of dihydroartemisinin, arteether, artemether, artesunic acid and artelinic acid in rats. J. Pharm. Pharmacol., 50, 173–182 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Lin, H.-S., Thenmozhiyal, J. C., Chan, S. Y., and Ho, P. C., Inclusion of acitretin into cyclodextrins: phase solubility, photostability, and physicochemical characterization. J. Pharm. Sci., 92, 2449–2457 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Marin, M. T., Margarit, M. V., and Salcedo, G. E., Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. Farmaco, 57, 723–727 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Ohárriz, M. C., Rodríguez-Espinosa, C., Martin, C., Goñi, M. M., Tros-Ilarduya, M. C., and Sánchez, M., Solid dispersions of diflunisal-PVP: polymorphic and amorphous states of the drug. Drug Dev. Ind. Pharm., 28, 717–725 (2002).

    Article  PubMed  Google Scholar 

  • Monographs for Antimalarial Drugs. In International Pharmacopoeia. WHO Press, Geneva, pp. 215–218, (2004).

    Google Scholar 

  • Nagarsenker, M. S. and Joshi, M. S., Celecoxib-cyclodextrin systems: characterization and evaluation of in vitro and in vivo advantage. Drug Dev. Ind. Pharm., 31, 169–178 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Narang, A. S. and Srivastava, A. K., Evaluation of solid dispersions of clofazimine. Drug Dev. Ind. Pharm., 28, 1001–1013 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Navaratnam, V., Mansor, S. M., Sit, N. W., Grace, J., Li, Q., and Olliaro, P., Pharmacokinetics of artemisinin-type compounds. Clin. Pharmacokinet., 39, 255–270 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Nontprasert, A., Pukrittayakamee, S., Nosten-Bertrand, M., Vanijanonta, S., and White, N. J., Studies of the neurotoxicity of oral artemisinin derivatives in mice. Am. J. Trop. Med. Hyg., 62, 409–412 (2000).

    PubMed  CAS  Google Scholar 

  • Palmieri, G. F., Cantalamessa, F., Di Martino, P., Nasuti, C., and Martelli, S., Lonidamine solid dispersions: in vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 28,10, 1241–1250 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sethia, S. and Squillante, E., Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int. J. Pharm., 272, 1–10 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Shinde, V. R., Shelake, M. R., Shetty, S. S., Chavan-Patil, A. B., Pore, Y. V., and Late, S. G., Enhanced solubility and dissolution rate of lamotrigine by inclusion complexation and solid dispersion technique. J. Pharm. Pharmacol., 60, 1121–1129 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Silamut, K., Newton, P. N., Teja-Isavadharm, P., Suputtamongkol, Y., Siriyanonda, D., Rasameesoraj, M., Pukrittayakamee, S., and White, N. J., Artemether bioavailability after oral or intramuscular administration in uncomplicated falciparum malaria. Antimicrob. Agent Chemother., 47, 3795–3798 (2003).

    Article  CAS  Google Scholar 

  • Tommasini, S., Calabró, M. L., Raneri, D., Ficarra, P., and Ficarra, R., Combined effect of pH and polysorbates with cyclodextrins on solubilization of naringenin. J. Pharm. Biomed. Anal., 36, 327–333 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Trapani, G., Franco, M., Latrofa, A., Pantaleo, M. R., Provenzano, M. R., Sanna, E., Maciocco, E., and Liso, G., Physicochemical characterization and in vivo properties of Zolpidem in solid dispersions with polyethylene glycol 4000 and 6000. Int. J. Pharm., 184, 121–130 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Van Nijlen, T., Brennan, K., Van den Mooter, G., Blaton, N., Kinget, R., and Augustijns, P., Improvement of the dissolution rate of artemisinin by means of supercritical fluid technology and solid dispersions. Int. J. Pharm., 254, 173–181 (2003).

    Article  PubMed  Google Scholar 

  • Wagner, J. G., Fundamentals of clinical pharmacokinetics. 1st edition. Drug Intelligence Publications, Illinois, (1975).

    Google Scholar 

  • Wong, J. W. and Yuen, K. H., Improved oral bioavailability of artemisinin through inclusion complexation with β- and γ-cyclodextrins. Int. J. Pharm., 227, 177–185 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wu, K., Li, J., Wang, W., and Winstead, D. A., Formation and characterization of solid dispersions of piroxicam and polyvinylpyrrolidone using spray drying and precipitation with compressed antisolvent. J. Pharm. Sci., 98, 2422–2431 (2009).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tayyab Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, M.T., Batty, K.T., Iqbal, I. et al. Improving the solubility and bioavailability of dihydroartemisinin by solid dispersions and inclusion complexes. Arch. Pharm. Res. 34, 757–765 (2011). https://doi.org/10.1007/s12272-011-0509-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-011-0509-1

Keywords

Navigation