Skip to main content

Advertisement

Log in

Effects of prednisolone on the pharmacokinetics of loratadine after oral and intravenous administration of loratadine in rats

  • Research Articles
  • Drug Actions
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The present study aims to investigate the effects of prednisolone on the pharmacokinetics of orally and intravenously administered loratadine in rats. A single dose of loratadine was administered orally (4 mg/kg) and intravenously (1 mg/kg) in the presence or absence of prednisolone (0.2 or 0.8 mg/kg). Compared to the oral control group, prednisolone (0.2 mg/kg, p < 0.05; 0.8 mg/kg, p < 0.01) significantly increased the area under the plasma concentrationtime curve of orally administered loratadine by 54.0–96.4%. After oral administration, the peak plasma concentration of loratadine was significantly (0.2 mg/kg, p < 0.05; 0.8 mg/kg, p < 0.01) increased by 20.9–65.3% in the presence of prednisolone. Consequently, the relative bioavailability of loratadine was increased by 1.54- to 1.96-fold. Compared to the intravenous control group, the presence of prednisolone significantly (0.8 mg/kg, p < 0.05) increased the area under the plasma concentration-time curve of loratadine. Prednisolone enhanced the oral bioavailability of loratadine in this study. The enhanced bioavailability of loratadine may be due to inhibition both cytochrome P450 3A4-mediated metabolism and the efflux pump P-glycoprotein (P-gp) in the intestine and/or liver by the presence of prednisolone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amini, H. and Ahmadiani, A., Rapid determination of loratadine in small volume plasma samples by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 809, 227–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Bradley, C. M. and Nicholson, A. N., Studies on the central effects of the H1-antagonist, loratadine. Eur. J. Clin. Pharmacol., 32, 419–421 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Carr, R. A., Edmonds, A., Shi, H., Locke, C. S., Gustavson, L. E., Craft, J. C., Harris, S. I., and Palmer, R., Steady-state pharmacokinetics and electrocardiographic pharmacodynamics of clarithromycin and loratadine after individual or concomitant administration. Antimicrob. Agents Chemother., 42, 1176–1180 (1998).

    CAS  PubMed  Google Scholar 

  • Clissold, S. P., Sorkin, E. M., and Goa, K. L., Loratadine, a preliminary review of its pharmacodynamic properties and therapeutic efficacy. Drugs, 37, 42–57 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Cummins, C. L., Jacobsen, W., and Benet, L. Z., Unmasking the dynamic interplay between intestinal P-glycoprotein and CYP3A4. J. Pharmacol. Exp. Ther., 300, 1036–1045 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Frey, B. M. and Frey, F. J., Clinical pharmacokinetics of prednisone and prednisolone. Clin. Pharmacokinet., 19, 126–146 (1990).

    Article  CAS  PubMed  Google Scholar 

  • Frey, F. J. and Frey, B. M., Urinary 6b-hydroxyprednisolone excretion indicates enhanced prednisolone catabolism. J. Lab. Clin. Med., 101, 593–604 (1983).

    CAS  PubMed  Google Scholar 

  • Henz, B. M., The pharmacologic profile of desloratadine: a review. Allergy, 56Suppl 65, 7–13 (2001).

    Article  PubMed  Google Scholar 

  • Hilbert, J., Radwanski, E., Weglein, R., Luc, V., Perentesis, G., Symchowicz, S., and Zampaglione, N., Pharmacokinetics and dose proportionality of loratadine. J. Clin. Pharmacol., 27, 694–698 (1987).

    CAS  PubMed  Google Scholar 

  • Ito, K., Kusuhara, H., and Sugiyama, Y., Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption; theoretical approach. Pharm. Res., 16, 225–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kaminsky, L. S. and Fasco, M. J., Small intestinal cytochromes P450. Crit. Rev. Toxocol., 21, 407–422 (1991).

    Article  CAS  Google Scholar 

  • Karssen, A. M., Meijer, O. C., van der Sandt, I. C., De Boer, A. G., De Lange, E. C., and De Kloet, E. R., The role of the efflux transporter P-glycoprotein in brain penetration of prednisolone. J. Endocrinol., 175, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Kay, G. G., Berman, B., Mockoviak, S. H., Morris, C. E., Reeves, D., Starbuck, V., Su-kenik, E., and Harris, A. G., Initial and steady-state effects of diphenhydramine and loratadine on sedation, cognition, mood, and psychomotor performance. Arch. Intern. Med., 157, 2350–2356 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kosoglou, T., Salfi, M., Lim, J. M., Batra, V. K., Cayen, M. N., and Affrime, M. B., Evaluation of the pharmacokinetics and electrocardiographic pharmacodynamics of loratadine with concomitant administration of ketoconazole or cimetidine. Br. J. Clin. Pharmacol., 50, 581–589 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kreutner, W., Hey, J. A., Anthes, J., Barnett, A., Young, S., and Tozzi, S., Preclinical pharmacology of desloratadine, a selective and nonsedating histamine H1 receptor antagonist. 1st communication: Receptor selectivity, antihistaminic activity, and antiallergenic effects. Arzneimittelforschung, 50, 345–352 (2000).

    CAS  PubMed  Google Scholar 

  • Madsbad, S., Bjerregaard, B., Henriksen, J. H., Juhl, E., and Kehlet, H., Impaired conversion of prednisone to prednisolone in patients with liver cirrhosis. Gut, 21, 52–56 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Nakayama, A., Eguchi, O., Hatakeyama, M., Saitoh, H., and Takada, M., Different absorption behaviors among steroid hormones due to possible interaction with P-glycoprotein in the rat small intestine. Biol. Pharm. Bull., 22, 535–538 (1999).

    CAS  PubMed  Google Scholar 

  • Philpot, E. E., Safety of second generation antihistamines. Allergy Asthma Proc., 21, 15–19 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Pichard, L., Gillet, G., Fabre, I., Dalet-Beluche, I., Bonfils, C., Thenot, J. P., and Maurel, P., Identification of the rabbit and human cytochromes P-450IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metab. Dispos., 18, 711–719 (1990).

    CAS  PubMed  Google Scholar 

  • Pichard, L., Fabre, I., Daujat, M., Domergue, J., Joyeux, H., and Maurel, P., Effect of corticosteroids on the expression of cytochromes P450 and on cyclosporin A oxidase activity in primary cultures of human hepatocytes. Mol. Pharmacol., 41, 1047–1055 (1992).

    CAS  PubMed  Google Scholar 

  • Prenner, B. M., Capano, D., and Harris, A. G., Efficacy and tolerability of loratadine versus fexofenadine in the treatment of seasonal allergic rhinitis: A-double-blind comparison with crossover treatment of nonresponders. Clin. Ther., 22, 760–769 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers, J. G., Uiterwijk, M. M., and O’Hanlon, J. F., Effects of loratadine and cetirizine on actual driving and psychometric test performance, and EEG during driving. Eur. J. Clin. Pharmacol., 42, 363–369 (1992).

    CAS  PubMed  Google Scholar 

  • Wacher, V. J., Silverman, J. A., Zhang, Y., and Benet, L. Z., Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J. Pharm. Sci., 87, 1322–1330 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Wang, E. J., Casciano, C. N., Clement, R. P., and Johnson, W. W., Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab. Dispos., 29, 1080–1083 (2001).

    CAS  PubMed  Google Scholar 

  • Waxman, D. J., Attisano, C., Guengerich, F. P., and Lapenson, D. P., Human liver microsomal steroid metabolism: identification of the major microsomal steroid hormone 6bhydroxylase cyto-chrome P-450 enzyme. Arch. Biochem. Biophys., 263, 424–436 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G. G., and Siegel, G., Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch. Neurol., 10, 1439–1443 (2000).

    Article  Google Scholar 

  • Yates, C. R., Chang, C., Kearbey, J. D., Yasuda, K., Schuetz, E. G., Miller, D. D., Dalton, J. T., and Swaan, P. W., Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res., 20, 1794–1803 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yin, O. Q., Shi, X., and Chow, M. S., Reliable and specific high-performance liquid chromatographic method for simultaneous determination of loratadine and its metabolite in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 796, 165–172 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Yumibe, N., Huie, K., Chen, K. J., Snow, M., Clement, R. P., and Cayen, M. N., Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6. Biochem. Pharmacol., 51, 165–172 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Shik Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Kim, M. & Choi, JS. Effects of prednisolone on the pharmacokinetics of loratadine after oral and intravenous administration of loratadine in rats. Arch. Pharm. Res. 33, 1395–1400 (2010). https://doi.org/10.1007/s12272-010-0913-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-010-0913-y

Key words

Navigation