Skip to main content
Log in

Cholinesterase and BACE1 inhibitory diterpenoids from Aralia cordata

  • Research Articles
  • Drug Discovery and Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Fourteen diterpenes were isolated from the n-hexane fraction of the roots of Aralia cordata (syn. = A. continentalis). Through spectroscopy, the chemical structures were determined as: ent-pimara-8(14),15-diene-19-oic acid (1); ent-kaur-16-en-19-oic-acid (2); 18-nor-ent-pimara-8(14),15-diene-4β-ol (3); 18-nor-ent-kaur-16-ene-4β-ol (4); ent-pimara-8(14),15-diene-19-ol (5); 7α-hydroxy-ent-pimara-8(14),15-diene-19-oic acid (6); 7β-hydroxy-ent-pimara-8(14),15-diene-19-oic acid (7); ent-pimar-15-en-8α,19-diol (8); 7-oxo-ent-pimara-8(14),15-diene-19-oic acid (9); 16α-hydroxy-17-isovaleroyloxy-ent-kauran-19-oic acid (10); 17-hydroxy-ent-kaur-15-en-19-oic acid (11); 15α,16α-epoxy-17-hydroxy-ent-kauran-19-oic acid (12); 16α,17-dihydroxy-ent-kauran-19-oic acid (13); and 16α-methoxy-17-hydroxy-ent-kauran-19-oic acid (14). Compounds 4, 5, 8, 12, and 14 were first isolated from this plant. The anti-Alzheimer and antioxidant effects of ent-pimarane-type diterpenes 1, 3, 5, 8, and 9, as well as ent-kaurane-type diterpenes 2, 4, and 1013, were evaluated via β-site amyloid precursor protein cleaving enzyme 1 (BACE1), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), peroxynitrite (ONOO), and nitric oxide (NO·) assays. Of the compounds tested, 8 exerted the most effective BChE inhibition with an IC50 value of 7.58 µM, followed by 3, 13, 11, 2, and 10. Compounds 911 exhibited good BACE1 inhibitory activities with IC50 values of 18.58∼24.10 µM. However, 11 showed marginal AChE inhibitory effect, and all compounds tested showed no scavenging activities on ONOO and NO· at a concentration of 100 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosio, S. R., Furtado, N. A., de Oliveira, D. C., da Costa, F. B., Martins, C. H., de Carvalho, T. C., Porto, T. S., and Veneziani, R. C., Antimicrobial activity of kaurane diterpenes against oral pathogens. Z. Naturforsch. [C], 63, 326–330 (2008).

    CAS  Google Scholar 

  • Ambrosio, S. R., Tirapelli, C. R., da Costa, F. B., and de Oliveira, A. M., Kaurane and pimarane-type diterpenes from the Viguiera species inhibit vascular smooth muscle contractility. Life Sci., 79, 925–933 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Bae, K. W., Medicinal Plants of Korea, Kyohak Publishing Co. Ltd., Seoul, p. 363 (2000).

    Google Scholar 

  • Bohlmann, F., Suding, H., Cuatrecasas, J., King, R. M., and Robinson, H., Neue diterpene aus der subtribus espeletiinae. Phytochemistry, 19, 267–271 (1980).

    Article  CAS  Google Scholar 

  • Dang, N. H., Zhang, X., Zheng, M., Son, K. H., Chang, H. W., Kim, H. P., Bae, K., and Kang, S. S., Inhibitory constituents against cyclooxygenases from Aralia cordata Thunb. Arch. Pharm. Res., 28, 28–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V. Jr., and Featherstone, R. M., A new and rapid colorimetric determination of acetylcholineserase activity. Biochem. Pharmacol., 7, 88–95 (1961).

    Article  CAS  PubMed  Google Scholar 

  • Ertaş, A., Öztürk, M., Boða, M., and Topçu, G., Antioxidant and anticholinesterase activity evaluation of ent-kaurane diterpenoids from Sideritis arguta (perpendicular). J. Nat. Prod., 72, 500–502 (2009).

    Article  Google Scholar 

  • Han, B. H., Han, Y. N., Han, K. A., Park, M. H., and Lee, E. O., Studies on the anti-inflammatory activity of Aralia continentalis (I). Characterization of continentalic acid and its anti-inflammatory activity. Arch. Pharm. Res., 6, 17–23 (1983).

    Article  CAS  Google Scholar 

  • Han, B. H., Woo, E. R., Park, M. H., and Han, Y. N., Studies on the anti-inflammatory activity of Aralia continentalis (III). Anti-inflammatory activity of (−)-kaur-16-en-19-oic acid. Arch. Pharm. Res., 8, 59–65 (1985).

    Article  Google Scholar 

  • Herz, W., Kulanthaivel, P., and Watanabe, K., ent-Kauranes and other constituents of three Helianthus species, Phytochemistry, 22, 2021–2025 (1983).

    Article  CAS  Google Scholar 

  • Jeong, S. I., Han, W. S., Yun, Y. H., and Kim, K. J., Continentalic acid from Aralia continentalis shows activity against methicillin-resistant Staphylococcus aureus. Phytother. Res., 20, 511–514 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kang, S. S., Chemistry and biological activity of the constituents from Aralia species. Ann. Rept. Nat. Prod. Sci., 5, 1–26 (1997).

    Google Scholar 

  • Kim, J. Y., Jung, K. J., Choi, J. S., and Chung, H. Y., Hesperetin: a potent antioxidant against peroxynitrite. Free Radic. Res., 38, 761–769 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Na, M., Oh, H., Jang, J., Sohn, C. B., Kim, B. Y., Oh, W. K., and Ahn, J. S., PTP1B inhibitory activity of kaurane diterpenes isolated from Siegesbeckia glabrescens. J. Enzyme Inhib. Med. Chem., 21, 379–383 (2006).

    Article  PubMed  Google Scholar 

  • Ko, H. H., Chang, W. -L., and Lu, T. -M., Antityrosinase and antioxidant effects of ent-kaurane diterpenes from leaves of Broussonetia papyrifera. J. Nat. Prod., 71, 1930–1933 (2008).

    Article  CAS  Google Scholar 

  • Kooy, N. W., Royall, J. A., Ischiropoulos, H., and Beckman, J. S., Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic. Biol. Med., 16, 149–156 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Lee, I. S., Jin, W., Zhang, X., Hung, T. M., Song, K. S., Seong, Y. H., and Bae, K., Cytotoxic and COX-2 inhibitory constituents from the aerial parts of Aralia cordata. Arch. Pharm. Res., 29, 548–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. T., Lineamenta Flora Koreae, Academy, Seoul, pp. 771–772 (1996).

    Google Scholar 

  • Lee, Y. N., Flora of Korea, Kyohak Publishing Co. Ltd., Seoul, p. 541 (2002).

    Google Scholar 

  • Matsuo, A., Uto, S., Nakayama, M., Hayashi, S., Yamasaki, K., Kasai, R., and Tanaka, O., (−)-Thermarol, a new entpimarane-class diterpene diol from Jungermannia thermarum (Liverwort). Tetrahedron Lett., 2451–2454 (1976).

  • Mihashi, S., Yanagisawa, I., Tanaka, O., and Shibata, S., Further study on the diterpenes of Aralia spp. Tetrahedron Lett., 1683–1686 (1969).

  • Na, M., Oh, W. K., Kim, Y. H., Cai, X. F., Kim, S., Kim, B. Y., and Ahn, J. S., Inhibition of protein tyrosine phosphatase 1B by diterpenoids isolated from Acanthopanax koreanum. Bioorg. Med. Chem. Lett., 16, 3061–3064 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa, Y., Hamada, C., Ishino, A., Tajima, M., and Fujimoto, Y., Hair preparation and skin prepartions containing kaurene derivatives. Jpn. Kokai Tokkyo Koho, JP 2002037716 (2002).

  • Okuyama, E., Nishimura, S., and Yamazaki, M., Analgesic principles from Aralia cordata THUNB. Chem. Pharm. Bull., 39, 405–407 (1991).

    CAS  PubMed  Google Scholar 

  • Perry, L. M., Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses, The MIT press, Cambridge, p. 41 (1980).

    Google Scholar 

  • Porto, T. S., Rangel, R., Furtado, N. A., de Carvalho, T. C., Martins, C. H., Veneziani, R. C., Da Costa, F. B., Vinholis, A. H., Cunha, W. R., Heleno, V. C., and Ambrosio, S. R., Pimarane-type diterpenes: antimicrobial activity against oral pathogens. Molecules, 14, 191–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Rao, A. A., Sridhar, G. R., and Das, U. N., Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med. Hypotheses, 69, 1272–1276 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Ryu, S. Y., Ahn, J. W., Han, Y. N., Han, B. H., and Kim, S. H., In vitro antitumor activity of diterpenes from Aralia cordata. Arch. Pharm. Res., 19, 77–78 (1996).

    Article  CAS  Google Scholar 

  • Seo, C. S., Li, G., Kim, C. H., Lee, C. S., Jahng, Y., Chang, H. W., and Son, J. K., Cytotoxic and DNA topoisomerases I and II inhibitory constituents from the roots of Aralia cordata. Arch. Pharm. Res., 30, 1404–1409 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Shibata, S., Mihashi, S., and Tanaka, O., The occurrence of (−)pimarane-type diterpene in Aralia cordata THUNB. Tetrahedron Lett., 51, 5241–5243 (1967).

    Article  Google Scholar 

  • Tanaka, O., Mihashi, S., Yanagisawa, I., Nikaido, T., and Shibata, S., Chemical studies of oriental plant drugs. XXXIV. Diterpenes of Aralia cordata. Oxidative transformation of 4-axial aldehyde of some diterpenes and a note to the naturally occurring 4-hydroxy-18(or 19)-norditerpenes. Tetrahedron, 28, 4523–4537 (1972).

    Article  CAS  Google Scholar 

  • Thirugnanasampandan, R., Jayakumar, R., Narmatha Bai, V., Martin, E., and Rajendra Prasad, K. J., Antiacetylcholinesterase and antioxidant ent-kaurene diterpenoid, melissoidesin from Isodon wightii (Bentham) H. Hara. Nat. Prod. Res., 22, 681–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Tirapelli, C. R., Ambrosio, S. R., Coutinho, S. T., de Oliveira, D. C., da Costa, F. B., and de Oliveira, A. M., Pharmacological comparison of the vasorelaxant action displayed by kaurenoic acid and pimaradienoic acid. J. Pharm. Pharmacol., 57, 997–1004 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Vassar, R., β-Secretase (BACE) as a drug target for alzheimer’s disease. Adv. Drug Deliv. Rev., 54, 1589–1602 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. C., Hung, Y. C., Chang, F. R., Cosentino, M., Wang, H. K., and Lee, K. H., Identification of ent-16β,17-dihydroxykauran-19-oic acid as an anti-HIV principle and isolation of the new diterpenoids annosquamosins A and B from Annona squamosa. J. Nat. Prod., 59, 635–637 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Yahara, S., Ishida, M., Yamasaki, K., Tanaka, O., and Mihashi, S., Minor diterpenes of Aralia cordata THUNB: 17-Hydroxy-ent-kaur-15-en-19-oic acid and grandifloric acid. Chem. Pharm. Bull., 22, 1629–1631 (1974).

    CAS  PubMed  Google Scholar 

  • Yan, R., Bienkowski, M. J., Shuck, M. E., Miao, H., Tory, M. C., Pauley, A. M., Brashier, J. R., Stratman, N. C., Mathews, W. R., Buhl, A. E., Carter, D. B., Tomasselli, A. G.., Parodi, L. A., Heinrikson, R. L., and Gurney, M. E., Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature, 402, 533–537 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y. M., Yang, J. S., and Xu, X. D., A new kaurane derivative from Aralia fargesii. Chin. Chem. Lett., 10, 673–674 (1999).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Sue Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, H.A., Lee, E.J., Kim, J.S. et al. Cholinesterase and BACE1 inhibitory diterpenoids from Aralia cordata . Arch. Pharm. Res. 32, 1399–1408 (2009). https://doi.org/10.1007/s12272-009-2009-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-009-2009-0

Key words

Navigation