Skip to main content

Advertisement

Log in

PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The increased incidence of hypertension associated with obstructive sleep apnea (OSA) presents significant physical, psychological, and economic challenges. Peroxisome proliferator-activated receptor gamma (PPARγ) plays a role in both OSA and hypertension, yet the therapeutic potential of PPARγ agonists and antagonists for OSA-related hypertension remains unexplored. Therefore, we constructed a chronic intermittent hypoxia (CIH)-induced hypertension rat model that mimics the pathogenesis of OSA-related hypertension in humans. The model involved administering PPARγ agonist rosiglitazone (RSG), PPARγ antagonist GW9662, or normal saline, followed by regular monitoring of blood pressure and thoracic aorta analysis using staining and electron microscopy. Intriguingly, our results indicated that both RSG and GW9662 appeared to potently counteract CIH-induced hypertension. In silico study suggested that GW9662's antihypertensive effect might mediated through angiotensin II receptor type 1 (AGTR1). Our findings provide insights into the mechanisms of OSA-related hypertension and propose novel therapeutic targets.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Abbreviations

AGTR1:

Angiotensin II receptor type 1

CIH:

Chronic intermittent hypoxia

DBP:

Diastolic blood pressure

GW:

GW9662

H&E:

Hematoxylin–eosin

NS:

Normal saline

Nx:

Normoxia

OSA:

Obstructive sleep apnea

PPARγ:

Peroxisome proliferator-activated receptor gamma

MPAP:

Pulmonary arterial pressure

Rg:

Radius of gyration

RMSD:

Root mean square deviation

RSG:

Rosiglitazone

MSAP:

Systemic arterial pressure

SBP:

Systolic blood pressure

TEM:

Transmission electron microscopy

TZDs:

Thiazolidinediones

EVG:

Verhoeff–Van Gieson elastic

References

  1. Lavie P. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. BMJ. 2000;320(7233):479–82. https://doi.org/10.1136/bmj.320.7233.479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Durán J, Esnaola S, Rubio R, Iztueta Á. Obstructive sleep apnea-hypopnea and related clinical features in a population-based sample of subjects aged 30 to 70 yr. Am J Respir Crit Care Med. 2001;163(3):685–9. https://doi.org/10.1164/ajrccm.163.3.2005065.

    Article  PubMed  Google Scholar 

  3. Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med. 1997;157(15):1746–52.

    Article  CAS  PubMed  Google Scholar 

  4. Hou H, Zhao Y, Yu W, et al. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis. J Glob Health. 2018;8(1): 010405. https://doi.org/10.7189/jogh.08.010405.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  5. Yeghiazarians Y, Jneid H, Tietjens JR, et al. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;144(3). https://doi.org/10.1161/CIR.0000000000000988

  6. Redline S, Azarbarzin A, Peker Y. Obstructive sleep apnoea heterogeneity and cardiovascular disease. Nat Rev Cardiol. 2023;20(8):560–73. https://doi.org/10.1038/s41569-023-00846-6.

    Article  CAS  PubMed  Google Scholar 

  7. Seravalle G, Grassi G. Sleep Apnea and Hypertension. High Blood Press Cardiovasc Prev. 2022;29(1):23–31. https://doi.org/10.1007/s40292-021-00484-4.

    Article  PubMed  Google Scholar 

  8. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904. https://doi.org/10.1172/JCI118235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lima-Junior JGA, Martins AVV, Drager LF. What is the Best Antihypertensive Treatment for OSA? Arch Bronconeumol. 2023;59(9):548–9. https://doi.org/10.1016/j.arbres.2023.03.006.

    Article  PubMed  Google Scholar 

  10. Diogo LN, Monteiro EC. The efficacy of antihypertensive drugs in chronic intermittent hypoxia conditions. Front Physiol. 2014;5. https://doi.org/10.3389/fphys.2014.00361

  11. Pedrosa RP, Drager LF, De Paula LKG, Amaro ACS, Bortolotto LA, Lorenzi-Filho G. Effects of OSA treatment on BP in patients with resistant hypertension: a randomized trial. Chest. 2013;144(5):1487–94. https://doi.org/10.1378/chest.13-0085.

    Article  CAS  PubMed  Google Scholar 

  12. Muxfeldt ES, Margallo V, Costa LMS, et al. Effects of continuous positive airway pressure treatment on clinic and ambulatory blood pressures in patients with obstructive sleep apnea and resistant hypertension: a randomized controlled trial. Hypertension. 2015;65(4):736–42. https://doi.org/10.1161/HYPERTENSIONAHA.114.04852.

    Article  CAS  PubMed  Google Scholar 

  13. Martínez-García MA, Capote F, Campos-Rodríguez F, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013;310(22):2407. https://doi.org/10.1001/jama.2013.281250.

    Article  CAS  PubMed  Google Scholar 

  14. Barbé F, Durán-Cantolla J, Capote F, et al. Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea. Am J Respir Crit Care Med. 2010;181(7):718–26. https://doi.org/10.1164/rccm.200901-0050OC.

    Article  PubMed  Google Scholar 

  15. Scholtes C, Giguère V. Transcriptional control of energy metabolism by nuclear receptors. Nat Rev Mol Cell Biol. 2022;23(11):750–70. https://doi.org/10.1038/s41580-022-00486-7.

    Article  CAS  PubMed  Google Scholar 

  16. Miyachi H. Structural Biology Inspired Development of a Series of Human Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Ligands: From Agonist to Antagonist. Int J Mol Sci. 2023;24(4):3940. https://doi.org/10.3390/ijms24043940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mannan A, Garg N, Singh TG, Kang HK. Peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ): Molecular Effects and Its Importance as a Novel Therapeutic Target for Cerebral Ischemic Injury. Neurochem Res. 2021;46(11):2800–31. https://doi.org/10.1007/s11064-021-03402-1.

    Article  CAS  PubMed  Google Scholar 

  18. Pizcueta P, Vergara C, Emanuele M, Vilalta A, Rodríguez-Pascau L, Martinell M. Development of PPARγ Agonists for the Treatment of Neuroinflammatory and Neurodegenerative Diseases: Leriglitazone as a Promising Candidate. Int J Mol Sci. 2023;24(4):3201. https://doi.org/10.3390/ijms24043201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ivanova EA, Parolari A, Myasoedova V, Melnichenko AA, Bobryshev YV, Orekhov AN. Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. J Cardiol. 2015;66(4):271–8. https://doi.org/10.1016/j.jjcc.2015.05.004.

    Article  PubMed  Google Scholar 

  20. Nesti L, Tricò D, Mengozzi A, Natali A. Rethinking pioglitazone as a cardioprotective agent: a new perspective on an overlooked drug. Cardiovasc Diabetol. 2021;20(1):109. https://doi.org/10.1186/s12933-021-01294-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang JV, Greyson CR, Schwartz GG. PPAR-γ as a therapeutic target in cardiovascular disease: evidence and uncertainty. J Lipid Res. 2012;53(9):1738–54. https://doi.org/10.1194/jlr.R024505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18(12):809–23. https://doi.org/10.1038/s41569-021-00569-6.

    Article  CAS  PubMed  Google Scholar 

  23. Füllert S, Schneider F, Haak E, et al. Effects of pioglitazone in nondiabetic patients with arterial hypertension: a double-blind, placebo-controlled study. J Clin Endocr Metab. 2002;87(12):5503–6 (2020071616072507200).

    Article  PubMed  Google Scholar 

  24. Komajda M, Curtis P, Hanefeld M, et al. Effect of the addition of rosiglitazone to metformin or sulfonylureas versus metformin/sulfonylurea combination therapy on ambulatory blood pressure in people with type 2 diabetes: a randomized controlled trial (the RECORD study). Cardiovasc Diabetol. 2008;7(1):10. https://doi.org/10.1186/1475-2840-7-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshii H, Onuma T, Yamazaki T, et al. Effects of pioglitazone on macrovascular events in patients with type 2 diabetes mellitus at high risk of stroke: the PROFIT-J study. J Atheroscler Thromb. 2014;21(6):563–73.

    PubMed  Google Scholar 

  26. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89. https://doi.org/10.1016/S0140-6736(05)67528-9.

    Article  CAS  PubMed  Google Scholar 

  27. Ogihara T, Rakugi H, Ikegami H, Mikami H, Masuo K. Enhancement of insulin sensitivity by troglitazone lowers blood pressure in diabetic hypertensives. Am J Hypertens. 1995;8(3):316–20. https://doi.org/10.1016/0895-7061(95)96214-5.

    Article  CAS  PubMed  Google Scholar 

  28. Gharib SA, Hayes AL, Rosen MJ, Patel SR. A Pathway-Based Analysis on the Effects of Obstructive Sleep Apnea in Modulating Visceral Fat Transcriptome. SLEEP. Published online January 1, 2013. https://doi.org/10.5665/sleep.2294

  29. Li X, Zhang X, Hou X, et al. Obstructive sleep apnea-increased DEC1 regulates systemic inflammation and oxidative stress that promotes development of pulmonary arterial hypertension. Apoptosis. 2023;28(3–4):432–46. https://doi.org/10.1007/s10495-022-01797-y.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Xiong W, Hang S, Wang Y, Zhang S, Liu S. Depletion of SENP1-mediated PPARγ SUMOylation exaggerates intermittent hypoxia-induced cognitive decline by aggravating microglia-mediated neuroinflammation. Aging (milano). 2021;13(11):15240–54. https://doi.org/10.18632/aging.203084.

    Article  CAS  Google Scholar 

  31. Lian N, Chen M, Zhang S, Chen L, Huang J, Lin Q. Decreased expression of PPARγ is associated with aortic endothelial cell apoptosis in intermittently hypoxic rats. Sleep Breath. 2021;25(4):2241–50. https://doi.org/10.1007/s11325-021-02319-x.

    Article  PubMed  Google Scholar 

  32. Ning-fang L, Yong-xu J, Jia C, Cai-yun W, Jie-feng H, Qi-chang L. The role of PPARγ in intermittent hypoxia-related human umbilical vein endothelial cell injury. Sleep Breath. 2023;27(3):1155–64. https://doi.org/10.1007/s11325-022-02696-x.

    Article  PubMed  Google Scholar 

  33. Tache V, Ciric A, Moretto-Zita M, et al. Hypoxia and Trophoblast Differentiation: A Key Role for PPARγ. Stem Cells Dev. 2013;22(21):2815–24. https://doi.org/10.1089/scd.2012.0596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rashid J, Alobaida A, Al-Hilal TA, et al. Repurposing rosiglitazone, a PPAR-γ agonist and oral antidiabetic, as an inhaled formulation, for the treatment of PAH. J Controlled Release. 2018;280:113–23. https://doi.org/10.1016/j.jconrel.2018.04.049.

    Article  CAS  Google Scholar 

  35. McGuiness JA, Scheinert RB, Asokan A, et al. Indomethacin Increases Neurogenesis across Age Groups and Improves Delayed Probe Trial Difference Scores in Middle-Aged Rats. Front Aging Neurosci. 2017;9:280. https://doi.org/10.3389/fnagi.2017.00280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Norris S, Carson S, Roberts C. Comparative Effectiveness of Pioglitazone and Rosiglitazone in Type 2 Diabetes, Prediabetes, and the Metabolic Syndrome: A Meta-Analysis. Curr Diabetes Rev. 2007;3(2):127–40. https://doi.org/10.2174/157339907780598216.

    Article  CAS  PubMed  Google Scholar 

  37. Younis F, Stern N, Limor R, Oron Y, Zangen S, Rosenthal T. Telmisartan ameliorates hyperglycemia and metabolic profile in nonobese Cohen-Rosenthal diabetic hypertensive rats via peroxisome proliferator activator receptor–γ activation. Metabolis. 2010;59(8):1200–9. https://doi.org/10.1016/j.metabol.2009.11.013.

    Article  CAS  Google Scholar 

  38. Prabhakar NR, Peng Y, Kumar GK, Nanduri J. Peripheral Chemoreception and Arterial Pressure Responses to Intermittent Hypoxia. Prakash YS, ed. Compr Physiol. 2015;5(2):561–77. https://doi.org/10.1002/cphy.c140039.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Dumitrascu R, Heitmann J, Seeger W, Weissmann N, Schulz R. Obstructive Sleep Apnea, Oxidative Stress and Cardiovascular Disease: Lessons from Animal Studies. Oxid Med Cell Longev. 2013;2013:1–7. https://doi.org/10.1155/2013/234631.

    Article  CAS  Google Scholar 

  40. Le XT, Thi Nguyen LT, Nguyen PT, et al. Anti-hypertensive effects of Callisia fragrans extract on Reno-vascular hypertensive rats. Clin Exp Hypertens. 2022;44(5):411–8. https://doi.org/10.1080/10641963.2022.2065286.

    Article  CAS  PubMed  Google Scholar 

  41. Cao et al Prenatal Lipopolysaccharides Exposure Induces Transgenerational Inheritance of Hypertension.pdf. 2022 https://doi.org/10.1161/CIRCULATIONAHA.122.059891

  42. Masters L, Eagon S, Heying M. Evaluation of consensus scoring methods for AutoDock Vina, smina and idock. J Mol Graph Model. 2020;96: 107532. https://doi.org/10.1016/j.jmgm.2020.107532.

    Article  CAS  PubMed  Google Scholar 

  43. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18. https://doi.org/10.1002/jcc.20291.

    Article  CAS  PubMed  Google Scholar 

  44. Mukohda M, Ozaki H. Anti-inflammatory mechanisms of the vascular smooth muscle PPARγ. J Smooth Muscle Res. 2021;57:1–7. https://doi.org/10.1540/jsmr.57.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nikolic D, Castellino G, Banach M, et al. PPAR Agonists, Atherogenic Dyslipidemia and Cardiovascular Risk. Curr Pharm Des. 2017;23(6):894–902. https://doi.org/10.2174/1381612822666161006151134.

    Article  CAS  PubMed  Google Scholar 

  46. Fang S, Livergood MC, Nakagawa P, Wu J, Sigmund CD. Role of the Peroxisome Proliferator Activated Receptors in Hypertension. Circ Res. 2021;128(7):1021–39. https://doi.org/10.1161/CIRCRESAHA.120.318062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barroso I, Gurnell M, Crowley VEF, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3. https://doi.org/10.1038/47254.

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Auclair M, Vigouroux C, Boccara F, et al. Peroxisome proliferator-activated receptor-γ mutations responsible for lipodystrophy with severe hypertension activate the cellular renin-angiotensin system. Arterioscler, Thromb, Vasc Biol. 2013;33(4):829–38. https://doi.org/10.1161/ATVBAHA.112.300962.

    Article  CAS  PubMed  Google Scholar 

  49. Horio T, Suzuki M, Suzuki K, et al. Pioglitazone Improves Left Ventricular Diastolic Function in Patients With Essential Hypertension. Am J Hypertens. 2005;18(7):949–57. https://doi.org/10.1016/j.amjhyper.2005.02.003.

    Article  CAS  PubMed  Google Scholar 

  50. Horio T, Suzuki M, Takamisawa I, et al. Pioglitazone-Induced Insulin Sensitization Improves Vascular Endothelial Function in Nondiabetic Patients With Essential Hypertension. Am J Hypertens. 2005;18(12):1626–30. https://doi.org/10.1016/j.amjhyper.2005.05.035.

    Article  CAS  PubMed  Google Scholar 

  51. Sobolev VV, Tchepourina E, Korsunskaya IM, et al. The Role of Transcription Factor PPAR-γ in the Pathogenesis of Psoriasis, Skin Cells, and Immune Cells. Int J Mol Sci. 2022;23(17):9708. https://doi.org/10.3390/ijms23179708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457–71. https://doi.org/10.1056/NEJMoa072761.

    Article  CAS  PubMed  Google Scholar 

  53. Lazar MA. Reversing the curse on PPARγ. J Clin Invest. 2018;128(6):2202–4. https://doi.org/10.1172/JCI121392.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Suzuki G, Khanal S, Rastogi S, et al. Long-term Pharmacological Activation of PPARγDoes not Prevent Left Ventricular Remodeling in Dogs with Advanced Heart Failure. Cardiovasc Drugs Ther. 2007;21(1):29–36. https://doi.org/10.1007/s10557-007-6003-9.

    Article  CAS  PubMed  Google Scholar 

  55. Zaki HA, Iftikhar H, Shallik NA, et al. A Systematic Review and Meta-Analysis of Randomized Controlled Trials Comparing the Effects of Biguanides (Metformin) and Thiazolidinediones on Glucose Tolerance and Insulin Sensitivity in Patients With Type II Diabetes Mellitus. Cureus. 2023;15(5): e39445. https://doi.org/10.7759/cureus.39445.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rieusset J, Touri F, Michalik L, et al. A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. Mol Endocrinol. 2002;16(11):2628–44 (2016092613584000132).

    Article  CAS  PubMed  Google Scholar 

  57. Santini E, Fallahi P, Ferrari SM, Masoni A, Antonelli A, Ferrannini E. Effect of PPAR-␥ Activation and Inhibition on Glucose-Stimulated Insulin Release in INS-1e Cells. 2004;53. https://doi.org/10.2337/diabetes.53.suppl_3.S79

  58. Kwak HJ, Choi HE, Jang J, et al. Suppression of Adipocyte Differentiation by Foenumoside B from Lysimachia foenum-graecum Is Mediated by PPARγ Antagonism. Peterson JM, ed. PLOS One. 2016;11(5):e0155432. https://doi.org/10.1371/journal.pone.0155432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang J, Liu X, Xie XB, Cheng XC, Wang RL. Multitargeted bioactive ligands for PPARs discovered in the last decade. Chem Biol Drug Des. 2016;88(5):635–63. https://doi.org/10.1111/cbdd.12806.

    Article  CAS  PubMed  Google Scholar 

  60. Mehta RG, Peng X, Roy S, et al. PPARγ antagonist GW9662 induces functional estrogen receptor in mouse mammary organ culture: potential translational significance. Mol Cell Biochem. 2013;372(1–2):249–56. https://doi.org/10.1007/s11010-012-1466-9.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Y, Yu L, Cai W, et al. Protopanaxatriol, a novel PPARγ antagonist from Panax ginseng, alleviates steatosis in mice. Sci Rep. 2014;4(1):7375. https://doi.org/10.1038/srep07375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Singh A, Nunes JJ, Ateeq B. Role and therapeutic potential of G-protein coupled receptors in breast cancer progression and metastases. Eur J Pharmacol. 2015;763(Pt B):178–83. https://doi.org/10.1016/j.ejphar.2015.05.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhuang Y, Niu F, Liu D, et al. Association between AGTR1 A1166C polymorphism and the susceptibility to diabetic nephropathy. Medicine (Baltimore). 2018;97(41): e07689. https://doi.org/10.1097/MD.0000000000007689.

    Article  CAS  PubMed  Google Scholar 

  64. Wang Q, You L, Li Z, Zhang L, Li X, Yang X. Influence of AGTR1 and ABCB1 Gene Polymorphism on the Curative Effect of Irbesartan. Katsuya T, ed. Int J Hypertens. 2022;2022:1–8. https://doi.org/10.1155/2022/4278675.

    Article  CAS  Google Scholar 

  65. Fletcher EC, Orolinova N, Bader M. Blood pressure response to chronic episodic hypoxia: the renin-angiotensin system. J Appl Physiol. 2002;92(2):627–33. https://doi.org/10.1152/japplphysiol.00152.2001.

    Article  CAS  PubMed  Google Scholar 

  66. Guan Y, Hao C, Cha DR, et al. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med. 2005;11(8):861–6. https://doi.org/10.1038/nm1278.

    Article  CAS  PubMed  Google Scholar 

  67. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27(1):256–63. https://doi.org/10.2337/diacare.27.1.256.

    Article  CAS  PubMed  Google Scholar 

  68. Kriska T, Cepura C, Gauthier KM, Campbell WB. Role of macrophage PPARγ in experimental hypertension. Am J Physiol-heart C. 2014;306(1):H26–32. https://doi.org/10.1152/ajpheart.00287.2013.

    Article  CAS  Google Scholar 

  69. Del Rio R, Moya EA, Iturriaga R. Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. Eur Respir J. 2010;36(1):143–50. https://doi.org/10.1183/09031936.00158109.

    Article  CAS  PubMed  Google Scholar 

  70. Kumar GK, Rai V, Sharma SD, et al. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006;575(1):229–39. https://doi.org/10.1113/jphysiol.2006.112524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kanagy NL, Walker BR, Nelin LD. Role of in intermittent hypoxia-induced hypertension. Hypertension. 2001;37(2):511–5. https://doi.org/10.1161/01.hyp.37.2.511.

    Article  CAS  PubMed  Google Scholar 

  72. Belaidi E, Joyeux-Faure M, Ribuot C, Launois SH, Levy P, Godin-Ribuot D. Major role for hypoxia inducible factor-1 and the endothelin system in promoting myocardial infarction and hypertension in an animal model of obstructive sleep apnea. J Am Coll Cardiol. 2009;53(15):1309–17. https://doi.org/10.1016/j.jacc.2008.12.050.

    Article  CAS  PubMed  Google Scholar 

  73. Guo C, Zhang M, Su W, Xu M, Zhao S. miR-199a-5p Relieves Obstructive Sleep Apnea Syndrome-Related Hypertension by Targeting HIF-1α. Wang F, ed. J Immunol Res. 2022;2022:1–11. https://doi.org/10.1155/2022/7236647.

    Article  CAS  Google Scholar 

  74. He L, Liao X, Zhu G, Kuang J. miR-126a-3p targets HIF-1α and alleviates obstructive sleep apnea syndrome with hypertension. Hum Cell. 2020;33(4):1036–45. https://doi.org/10.1007/s13577-020-00404-z.

    Article  CAS  PubMed  Google Scholar 

  75. Rodriguez J, Escobar JB, Cheung EC, et al. Hypothalamic Oxytocin Neuron Activation Attenuates Intermittent Hypoxia-Induced Hypertension and Cardiac Dysfunction in an Animal Model of Sleep Apnea. Hypertension. 2023;80(4):882–94. https://doi.org/10.1161/HYPERTENSIONAHA.122.20149.

    Article  CAS  PubMed  Google Scholar 

  76. Lu D, Wang J, Zhang H, Shan Q, Zhou B. Renal denervation improves chronic intermittent hypoxia induced hypertension and cardiac fibrosis and balances gut microbiota. Life Sci. 2020;262: 118500. https://doi.org/10.1016/j.lfs.2020.118500.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding This work was supported by the National Natural Science Foundation of China (82270456, 81970445).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbo Ge or Zhaoqiang Cui.

Ethics declarations

Ethical Approval

No human studies were carried out by the authors for this article.

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by Fudan University's Animal Ethics Committee, China.

Conflict of Interest

The authors declared no competing interests.

Additional information

Editor-in-Chief Enrique Lara-Pezzi oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Wei, F., Ning, S. et al. PPARγ Agonist Rosiglitazone and Antagonist GW9662: Antihypertensive Effects on Chronic Intermittent Hypoxia-Induced Hypertension in Rats. J. of Cardiovasc. Trans. Res. (2024). https://doi.org/10.1007/s12265-024-10499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12265-024-10499-6

Keywords

Navigation