Gulati, A., Japp, A. G., Raza, S., Halliday, B. P., Jones, D. A., Newsome, S., Prasad, S. K. (2018). Absence of myocardial fibrosis predicts favorable long-term survival in new-onset heart failure. Circulation: Cardiovascular Imaging, 11(9), e007722. https://doi.org/10.1161/CIRCIMAGING.118.007722
Burstein, B., & Nattel, S. (2008). Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. Journal of the American College of Cardiology, 51(8), 802–9. https://doi.org/10.1016/j.jacc.2007.09.064
Rockey, D. C., Bell, P. D., & Hill, J. A. (2015). Fibrosis — A common pathway to organ injury and failure. New England Journal of Medicine, 372(12), 1138–49. https://doi.org/10.1056/nejmra1300575
Heymans, S., González, A., Pizard, A., Papageorgiou, A. P., Lõpez-Andrés, N., Jaisser, F., Díez, J. (2015). Searching for new mechanisms of myocardial fibrosis with diagnostic and/or therapeutic potential. European Journal of Heart Failure, 17(8), 764–71. https://doi.org/10.1002/ejhf.312
Shull, M. M., Ormsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., Doetschman, T. (1992). Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–9. https://doi.org/10.1038/359693a0
Bierie, B., Chung, C. H., Parker, J. S., Stover, D. G., Cheng, N., Chytil, A., Moses, H. L. (2009). Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer. Journal of Clinical Investigation, 119(6), 1571–82. https://doi.org/10.1172/JCI37480
Tallquist, M. D., & Molkentin, J. D. (2017). Redefining the identity of cardiac fibroblasts. Nature Reviews Cardiology, 14(8), 484–491. https://doi.org/10.1038/nrcardio.2017.57
Schafer S., Viswanathan S., Widjaja AA., Lim WW., Moreno-Moral A., DeLaughter DM., ... Cook SA. (2017). IL11 is a crucial determinant of cardiovascular fibrosis. Nature, 552(7683), 110–115. https://doi.org/10.1038/nature24676
Batlle, R., Alba-Castellón, L., Loubat-Casanovas, J., Armenteros, E., Francí, C., Stanisavljevic, J., De Herreros, A. G. (2013). Snail1 controls TGF-β responsiveness and differentiation of mesenchymal stem cells. Oncogene, 32(28), 3381–9. https://doi.org/10.1038/onc.2012.342
Biswas, H., & Longmore, G. D. (2016). Action of SNAIL1 in cardiac myofibroblasts is important for cardiac fibrosis following hypoxic injury. PLoS ONE, 11(10), e0162636. https://doi.org/10.1371/journal.pone.0162636
Horiguchi, K., Shirakihara, T., Nakano, A., Imamura, T., Miyazono, K., & Saitoh, M. (2009). Role of Ras signaling in the induction of snail by transforming growth factor-β. Journal of Biological Chemistry, 284(1), 245–253. https://doi.org/10.1074/jbc.M804777200
Baulida, J., Díaz, V. M., & García de Herreros, A. (2019). Snail1: A transcriptional factor controlled at multiple levels. Journal of Clinical Medicine, 8(6), 757. https://doi.org/10.3390/jcm8060757
Boutet, A., De Frutos, C. A., Maxwell, P. H., Mayol, M. J., Romero, J., & Nieto, M. A. (2006). Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO Journal, 25(23), 5603–13. https://doi.org/10.1038/sj.emboj.7601421
Kanisicak, O., Khalil, H., Ivey, M. J., Karch, J., Maliken, B. D., Correll, R. N., Molkentin, J. D. (2016). Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nature Communications, 7, 12260. https://doi.org/10.1038/ncomms12260
Chen, J., Brunner, A. D., Cogan, J. Z., Nuñez, J. K., Fields, A. P., Adamson, B., Weissman, J. S. (2020). Pervasive functional translation of noncanonical human open reading frames. Science, 367(6482), 1140–1146. https://doi.org/10.1126/science.aav5912
Couso, J. P., & Patraquim, P. (2017). Classification and function of small open reading frames. Nature Reviews Molecular Cell Biology, 18(9), 575–589. https://doi.org/10.1038/nrm.2017.58
Saghatelian, A., & Couso, J. P. (2015). Discovery and characterization of smORF-encoded bioactive polypeptides. Nature Chemical Biology, 11(12), 909–16. https://doi.org/10.1038/nchembio.1964
Ingolia, N. T., Brar, G. A., Stern-Ginossar, N., Harris, M. S., Talhouarne, G. J. S., Jackson, S. E., Weissman, J. S. (2014). Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Reports, 8(5), 1365–79. https://doi.org/10.1016/j.celrep.2014.07.045
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S., & Weissman, J. S. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324(5924), 218–23. https://doi.org/10.1126/science.1168978
Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M., & Weissman, J. S. (2012). The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nature Protocols, 7(8):1534–50. https://doi.org/10.1038/nprot.2012.086
Makarewich, C. A., Munir, A. Z., Schiattarella, G. G., Bezprozvannaya, S., Raguimova, O. N., Cho, E. E., Olson, E. N. (2018). The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife, 7, e38319. https://doi.org/10.7554/eLife.38319
Nelson, B. R., Makarewich, C. A., Anderson, D. M., Winders, B. R., Troupes, C. D., Wu, F., Olson, E. N. (2016). A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 351(6270), 271–5. https://doi.org/10.1126/science.aad4076
Anderson, D. M., Anderson, K. M., Chang, C. L., Makarewich, C. A., Nelson, B. R., McAnally, J. R., Olson, E. N. (2015). A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell, 160(4), 595–606. https://doi.org/10.1016/j.cell.2015.01.009
Makarewich CA, Bezprozvannaya S, Gibson AM, Bassel-Duby R, Olson EN. (2020). Gene therapy with the DWORF micropeptide attenuates cardiomyopathy in mice. Circulation Research, 127(10), 1340–1342. https://doi.org/10.1161/circresaha.120.317156
van Heesch, S., Witte, F., Schneider-Lunitz, V., Schulz, J. F., Adami, E., Faber, A. B., Hubner, N. (2019). The translational landscape of the human heart. Cell, 178(1), 242–260.e29. https://doi.org/10.1016/j.cell.2019.05.010
Yang, H., Cao, Y., Zhang, J., Liang, Y., Su, X., Zhang, C., Fan, Z. (2020). DLX5 and HOXC8 enhance the chondrogenic differentiation potential of stem cells from apical papilla via LINC01013. Stem Cell Research and Therapy, 11(1), 271. https://doi.org/10.1186/s13287-020-01791-8
Chung, I. H., Lu, P. H., Lin, Y. H., Tsai, M. M., Lin, Y. W., Yeh, C. T., & Lin, K. H. (2017). The long non-coding RNA LINC01013 enhances invasion of human anaplastic large-cell lymphoma. Scientific Reports, 7(1), 295. https://doi.org/10.1038/s41598-017-00382-7
Wang, W., Xu, S., Di, Y., Zhang, Z., Li, Q., Guo, K., Wang, B. (2021). Novel role of LINC01013/miR-6795-5p/FMNL3 axis in the regulation of hepatocellular carcinoma stem cell features. Acta biochimica et biophysica Sinica, 53(6), 652–662. https://doi.org/10.1093/abbs/gmab040
Pham, T. P., Bink, D. I., Stanicek, L., van Bergen, A., van Leeuwen, E., Tran, Y., Boon, R. A. (2021). Long non-coding RNA aerrie controls DNA damage repair via YBX1 to maintain endothelial cell function. Frontiers in Cell and Developmental Biology, 8, 619079. https://doi.org/10.3389/fcell.2020.619079
Chandra, S., Ehrlich, K. C., Lacey, M., Baribault, C., & Ehrlich, M. (2021). Epigenetics and expression of key genes associated with cardiac fibrosis: NLRP3, MMP2, MMP9, CCN2/CTGF, and AGT. Epigenomics, 13(3), 219–234. https://doi.org/10.2217/epi-2020-0446
Chothani, S., Schäfer, S., Adami, E., Viswanathan, S., Widjaja, A. A., Langley, S. R., Rackham, O. J. L. (2019). Widespread translational control of fibrosis in the human heart by RNA-binding proteins. Circulation, 140(11), 937–951. https://doi.org/10.1161/CIRCULATIONAHA.119.039596
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–20. https://doi.org/10.1093/bioinformatics/btu170
Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10, R25. https://doi.org/10.1186/gb-2009-10-3-r25
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635
Liao, Y., Smyth, G. K., & Shi, W. (2013). The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research, 41(10), e108. https://doi.org/10.1093/nar/gkt214
Xiao, Z., Huang, R., Xing, X., Chen, Y., Deng, H., & Yang, X. (2018). De novo annotation and characterization of the translatome with ribosome profiling data. Nucleic Acids Research, 46(10), e61. https://doi.org/10.1093/nar/gky179
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25(4), 402–8. https://doi.org/10.1006/meth.2001.1262
Litviňuková, M., Talavera-López, C., Maatz, H., Reichart, D., Worth, C. L., Lindberg, E. L., Teichmann, S. A. (2020). Cells of the adult human heart. Nature, 588(7838), 466–472. https://doi.org/10.1038/s41586-020-2797-4
Chignon, A., Argaud, D., Boulanger, M.-C., Mkannez, G., Bon-Baret, V., Li, Z., & Mathieu, P. (2022). Genome-wide chromatin contacts of super-enhancer-associated lncRNA identify LINC01013 as a regulator of fibrosis in the aortic valve. PLOS Genetics, 18(1), e1010010. https://doi.org/10.1371/journal.pgen.1010010
CAS
Article
PubMed
PubMed Central
Google Scholar
Meng, X. M., Nikolic-Paterson, D. J., & Lan, H. Y. (2016). TGF-β: The master regulator of fibrosis. Nature Reviews Nephrology, 12(6), 325–38. https://doi.org/10.1038/nrneph.2016.48
Li, L., Fan, D., Wang, C., Wang, J. Y., Cui, X. B., Wu, D., Wu, L. L. (2011). Angiotensin II increases periostin expression via Ras/p38 MAPK/CREB and ERK1/2/TGF-β1 pathways in cardiac fibroblasts. Cardiovascular Research, 91(1), 80–9. https://doi.org/10.1093/cvr/cvr067
Cano, A., Pérez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., Del Barrio, M. G., Nieto, M. A. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2(2), 76–83. https://doi.org/10.1038/35000025
Akhmetshina, A., Palumbo, K., Dees, C., Bergmann, C., Venalis, P., Zerr, P., Distler, J. H. W. (2012). Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nature Communications, 3, 735. https://doi.org/10.1038/ncomms1734
Gibb, A. A., Lazaropoulos, M. P., & Elrod, J. W. (2020). Myofibroblasts and fibrosis: Mitochondrial and metabolic control of cellular differentiation. Circulation Research, 127(3), 427–447. https://doi.org/10.1161/CIRCRESAHA.120.316958
Statello, L., Guo, C. J., Chen, L. L., & Huarte, M. (2021). Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews Molecular Cell Biology, 22(2):96–118. https://doi.org/10.1038/s41580-020-00315-9
Sun, J., Wang, R., Chao, T., & Wang, C. (2021). Long noncoding RNAs involved in cardiomyocyte apoptosis triggered by different stressors. Journal of Cardiovascular Translational Research, 15, 588–603. https://doi.org/10.1007/s12265-021-10186-w
Yan, L., Zhang, Y., Zhang, W., Deng, S. Q., & Ge, Z. R. (2020). lncRNA-NRF is a potential biomarker of heart failure after acute myocardial infarction. Journal of Cardiovascular Translational Research, 13(6), 1008–1015. https://doi.org/10.1007/s12265-020-10029-0
Anderson, D. M., Makarewich, C. A., Anderson, K. M., Shelton, J. M., Bezprozvannaya, S., Bassel-Duby, R., & Olson, E. N. (2016). Widespread control of calcium signaling by a family of SERCA-inhibiting micropeptides. Science Signaling, 9(457), ra119. https://doi.org/10.1126/scisignal.aaj1460