Skip to main content

Advertisement

Log in

Modified Exosomes: a Good Transporter for miRNAs within Stem Cells to Treat Ischemic Heart Disease

  • Review Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Stem cell-based therapy for ischemic heart disease (IHD) has become a promising but controversial strategy during the past two decades. The fate and effects of stem cells engrafted into ischemia myocardium are still not fully understood. Stem cell-derived exosomes, a subcategory of extracellular vesicles with nano size, have been considered as an efficient and safe transporter for microRNAs (miRNAs) and a central mediator of the cardioprotective potentials of the parental cells. Hypoxia, pharmacological intervention, and gene manipulation could alter the exosomal miRNAs cargos from stem cells and promote therapeutic potential. Furthermore, several bioengineering methods were also successfully applied to modify miRNAs content and components of exosomal membrane proteins recently. In this review, we outline relevant results about exosomal miRNAs from stem cells and focus on the current strategies to promote their therapeutic efficiency in IHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMSC:

Bone marrow mesenchymal stem cells

CCND2:

Cyclin D2

CDC:

Cardiosphere-derived cells

Cltc1:

Clathrin heavy chain 1

CNP:

Cellular nanoporation biological chip

COX-2:

Cyclooxygenase 2

CPC:

Cardiac progenitor cells

ERCC:

Extracellular RNA Communication Consortium

ESC:

Embryonic stem cells

hucMSC:

Human umbilical cord MSCs

HUVEC:

Human umbilical vein endothelial cell

IHD:

Ischemic heart disease

iPSC:

Induced pluripotent cell

Lamp2b:

Lysosomal-associated membrane protein 2

MAPC:

Multipotent adult progenitor cells

MI:

Myocardial infarction

MI/R:

Myocardial ischemia–reperfusion

NSC:

Neural stem cells

nSMase2:

Neutral sphingomyelinase 2

PCR:

Principal component regression

PLSR:

Partial least squares regression

PTEN:

Gene of phosphate and tension homology deleted on chromsome ten

PDCD4:

Programmed cell death 4

References

  1. Zhao, D., Liu, J., Wang, M., et al. (2019). Epidemiology of cardiovascular disease in China: Current features and implications. Nature Reviews. Cardiology, 16, 203–212. https://doi.org/10.1038/s41569-018-0119-4

    Article  PubMed  Google Scholar 

  2. Kaski, J.-C., Crea, F., Gersh, B. J., & Camici, P. G. (2018). Reappraisal of ischemic heart disease. Circulation, 138, 1463–1480. https://doi.org/10.1161/CIRCULATIONAHA.118.031373

    Article  PubMed  Google Scholar 

  3. van der Pol, A., van Gilst, W. H., Voors, A. A., & van der Meer, P. (2019). Treating oxidative stress in heart failure: Past, present and future. European Journal of Heart Failure, 21, 425–435. https://doi.org/10.1002/ejhf.1320

    Article  PubMed  Google Scholar 

  4. Bai, X., Yan, Y., Song, Y.-H., et al. (2010). Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction. European Heart Journal, 31, 489–501. https://doi.org/10.1093/eurheartj/ehp568

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Chen, Z., Dai, Q., et al. (2020). Intravenously delivered mesenchymal stem cells prevent microvascular obstruction formation after myocardial ischemia/reperfusion injury. Basic Research in Cardiology, 115, 40. https://doi.org/10.1007/s00395-020-0800-8

    Article  CAS  PubMed  Google Scholar 

  6. Gao, L., Gregorich, Z. R., Zhu, W., et al. (2018). Large cardiac muscle patches engineered from human induced-pluripotent stem cell–derived cardiac cells improve recovery from myocardial infarction in swine. Circulation, 137, 1712–1730. https://doi.org/10.1161/CIRCULATIONAHA.117.030785

    Article  PubMed  Google Scholar 

  7. Shiba, Y., Gomibuchi, T., Seto, T., et al. (2016). Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature, 538, 388–391. https://doi.org/10.1038/nature19815

    Article  CAS  PubMed  Google Scholar 

  8. Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., et al. (2003). Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425, 968–973. https://doi.org/10.1038/nature02069

    Article  CAS  PubMed  Google Scholar 

  9. Nygren, J. M., Jovinge, S., Breitbach, M., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 10, 494–501. https://doi.org/10.1038/nm1040

    Article  CAS  PubMed  Google Scholar 

  10. Thum, T., Bauersachs, J., Poole-Wilson, P. A., et al. (2005). The dying stem cell hypothesis. Journal of the American College of Cardiology, 46, 1799–1802. https://doi.org/10.1016/j.jacc.2005.07.053

    Article  CAS  PubMed  Google Scholar 

  11. Vagnozzi, R. J., Maillet, M., Sargent, M. A., et al. (2019). An acute immune response underlies the benefit of cardiac stem-cell therapy. Nature, 577,. https://doi.org/10.1038/s41586-019-1802-2

  12. Gomzikova, M. O., & Rizvanov, A. A. (2017). Current trends in regenerative medicine: From cell to cell-free therapy. Bionanoscience, 7, 240–245. https://doi.org/10.1007/s12668-016-0348-0

    Article  Google Scholar 

  13. Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367,. https://doi.org/10.1126/science.aau6977

  14. Moghaddam, A. S., Afshari, J. T., Esmaeili, S. A., et al. (2019). Cardioprotective microRNAs: Lessons from stem cell-derived exosomal microRNAs to treat cardiovascular disease. Atherosclerosis, 285, 1–9. https://doi.org/10.1016/j.atherosclerosis.2019.03.016

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto, Y., Akiyama, Y., & Yuasa, Y. (2013). Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. PLoS ONE, 8, e62589. https://doi.org/10.1371/journal.pone.0062589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agarwal, U., George, A., Bhutani, S., et al. (2017). Experimental, systems, and computational approaches to understanding the microRNA-mediated reparative potential of cardiac progenitor cell–derived exosomes from pediatric patients. Circulation Research, 120, 701–712. https://doi.org/10.1161/CIRCRESAHA.116.309935

    Article  CAS  PubMed  Google Scholar 

  17. Ferguson, S. W., Wang, J., Lee, C. J., et al. (2018). The microRNA regulatory landscape of MSC-derived exosomes: A systems view. Science and Reports, 8, 1–12. https://doi.org/10.1038/s41598-018-19581-x

    Article  CAS  Google Scholar 

  18. Das, S., Abdel-Mageed, A. B., Adamidi, C., et al. (2019). The extracellular RNA communication consortium: Establishing foundational knowledge and technologies for extracellular RNA research. Cell, 177, 231–242. https://doi.org/10.1016/j.cell.2019.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, X., Tang, Y., Liu, Z., et al. (2021). The application potential and advance of mesenchymal stem cell-derived exosomes in myocardial infarction. Stem Cells Int, 2021,. https://doi.org/10.1155/2021/5579904

  20. Orlic, D., Kajstura, J., Chimenti, S., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705. https://doi.org/10.1038/35070587

    Article  CAS  PubMed  Google Scholar 

  21. Tseliou, E., Pollan, S., Malliaras, K., et al. (2013). Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. Journal of the American College of Cardiology, 61, 1108–1119. https://doi.org/10.1016/j.jacc.2012.10.052

    Article  PubMed  Google Scholar 

  22. Malliaras, K., Smith, R. R., Kanazawa, H., et al. (2013). Validation of contrast-enhanced magnetic resonance imaging to monitor regenerative efficacy after cell therapy in a porcine model of convalescent myocardial infarction. Circulation, 128, 2764–2775. https://doi.org/10.1161/CIRCULATIONAHA.113.002863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chimenti, I., Smith, R. R., Li, T.-S., et al. (2010). Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circulation Research, 106, 971–980. https://doi.org/10.1161/CIRCRESAHA.109.210682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Breitbach, M., Bostani, T., Roell, W., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110, 1362–1369. https://doi.org/10.1182/blood-2006-12-063412

    Article  CAS  PubMed  Google Scholar 

  25. Sun, L., Xu, R., Sun, X., et al. (2016). Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell. Cytotherapy, 18, 413–422. https://doi.org/10.1016/j.jcyt.2015.11.018

    Article  CAS  PubMed  Google Scholar 

  26. Anjos-Afonso, F., Siapati, E. K., & Bonnet, D. (2004). In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. Journal of Cell Science, 117, 5655–5664. https://doi.org/10.1242/jcs.01488

    Article  CAS  PubMed  Google Scholar 

  27. Fischer, U. M., Harting, M. T., Jimenez, F., et al. (2009). Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev, 18, 683–691. https://doi.org/10.1089/scd.2008.0253

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi, M., Li, T. S., Suzuki, R., et al. (2006). Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol - Hear Circ Physiol, 291, 886–893. https://doi.org/10.1152/ajpheart.00142.2006

    Article  CAS  Google Scholar 

  29. Lee, K., Silva, E. A., & Mooney, D. J. (2011). Growth factor delivery-based tissue engineering: General approaches and a review of recent developments. Journal of the Royal Society, Interface, 8, 153–170. https://doi.org/10.1098/rsif.2010.0223

    Article  CAS  PubMed  Google Scholar 

  30. Eppler, S. M., Combs, D. L., Henry, T. D., et al. (2002). A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans*. Clinical Pharmacology and Therapeutics, 72, 20–32. https://doi.org/10.1067/mcp.2002.126179

    Article  CAS  PubMed  Google Scholar 

  31. Yu, B., Kim, H. W., Gong, M., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360. https://doi.org/10.1016/j.ijcard.2014.12.043

    Article  PubMed  Google Scholar 

  32. Yang, Z., Shi, J., Xie, J., et al. (2020). Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng, 4, 69–83. https://doi.org/10.1038/s41551-019-0485-1

    Article  CAS  PubMed  Google Scholar 

  33. Arslan, F., Lai, R. C., Smeets, M. B., et al. (2013). Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res, 10, 301–312. https://doi.org/10.1016/j.scr.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  34. Pêche, H., Heslan, M., Usal, C., et al. (2003). Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection1. Transplantation, 76, 1503–1510. https://doi.org/10.1097/01.TP.0000092494.75313.38

    Article  CAS  PubMed  Google Scholar 

  35. Lai, R. C., Arslan, F., Lee, M. M., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res, 4, 214–222. https://doi.org/10.1016/j.scr.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  36. Yu, B., Gong, M., Wang, Y., et al. (2013). Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS ONE, 8, 1–11. https://doi.org/10.1371/journal.pone.0073304

    Article  CAS  Google Scholar 

  37. Wan, Z., Zhao, L., Lu, F., et al. (2020). Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics, 10, 218–230. https://doi.org/10.7150/thno.38198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamerkar, S., LeBleu, V. S., Sugimoto, H., et al. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546, 498–503. https://doi.org/10.1038/nature22341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mayourian, J., Ceholski, D. K., Gorski, P. A., et al. (2018). Exosomal microRNA-21-5p mediates mesenchymal stem cell paracrine effects on human cardiac tissue contractility. Circulation Research, 122, 933–944. https://doi.org/10.1161/CIRCRESAHA.118.312420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Luther, K. M., Haar, L., McGuinness, M., et al. (2018). Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. Journal of Molecular and Cellular Cardiology, 119, 125–137. https://doi.org/10.1016/j.yjmcc.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  41. Zhao, J., Li, X., Hu, J., et al. (2019). Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovascular Research, 115, 1205–1216. https://doi.org/10.1093/cvr/cvz040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xiao, C., Wang, K., Xu, Y., et al. (2018). Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circulation Research, 123, 564–578. https://doi.org/10.1161/CIRCRESAHA.118.312758

    Article  CAS  PubMed  Google Scholar 

  43. Mohyeldin, A., Garzón-Muvdi, T., & Quiñones-Hinojosa, A. (2010). Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell, 7, 150–161. https://doi.org/10.1016/j.stem.2010.07.007

    Article  CAS  PubMed  Google Scholar 

  44. Zhu, L. P., Tian, T., Wang, J. Y., et al. (2018). Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics, 8, 6163–6177. https://doi.org/10.7150/thno.28021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, J., Lu, K., Zhang, N., et al. (2018). Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif Cells, Nanomedicine Biotechnol, 46, 1659–1670. https://doi.org/10.1080/21691401.2017.1388249

    Article  CAS  Google Scholar 

  46. Cheng, H., Chang, S., Xu, R., et al. (2020). Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Research & Therapy, 11, 1–14. https://doi.org/10.1186/s13287-020-01737-0

    Article  CAS  Google Scholar 

  47. Zhang, X., Wang, X., Zhu, H., et al. (2010). Synergistic effects of the GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. Journal of Molecular and Cellular Cardiology, 49, 841–850. https://doi.org/10.1016/j.yjmcc.2010.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai, G., Xu, Q., Luo, R., et al. (2015). Atorvastatin treatment improves effects of implanted mesenchymal stem cells: Meta-analysis of animal models with acute myocardial infarction. BMC Cardiovascular Disorders, 15, 1–6. https://doi.org/10.1186/s12872-015-0162-6

    Article  CAS  Google Scholar 

  49. Kim, Y. S., Ahn, Y., Kwon, J. S., et al. (2012). Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury. Cells, Tissues, Organs, 195, 428–442. https://doi.org/10.1159/000329234

    Article  CAS  PubMed  Google Scholar 

  50. Xu, H., Yang, Y. J., Qian, H. Y., et al. (2011). Rosuvastatin treatment activates JAK-STAT pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted hearts. Circulation Journal, 75, 1476–1485. https://doi.org/10.1253/circj.CJ-10-1275

    Article  CAS  PubMed  Google Scholar 

  51. Huang, P., Wang, L., Li, Q., et al. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116, 353–367. https://doi.org/10.1093/cvr/cvz139

    Article  CAS  PubMed  Google Scholar 

  52. Beltrami, A. P., Barlucchi, L., Torella, D., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration we have documented the existence of cycling ventricular myocytes in the normal and pathologic adult mam. Cell, 114, 763–776.

    Article  CAS  Google Scholar 

  53. Chen, L., Wang, Y., Pan, Y., et al. (2013). Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun, 431, 566–571. https://doi.org/10.1016/j.bbrc.2013.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao, J., Pan, Y., Li, X. H., et al. (2016). Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death & Disease, 7, 1–10. https://doi.org/10.1038/cddis.2016.181

    Article  CAS  Google Scholar 

  55. Gray, W. D., French, K. M., Ghosh-Choudhary, S., et al. (2015). Identification of Therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation Research, 116, 255–263. https://doi.org/10.1161/CIRCRESAHA.116.304360

    Article  CAS  PubMed  Google Scholar 

  56. Chen, S. J., Chang, C. M., Tsai, S. K., et al. (2010). Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev, 19, 1757–1767. https://doi.org/10.1089/scd.2009.0452

    Article  CAS  PubMed  Google Scholar 

  57. Tsuji, O., Miura, K., Okada, Y., et al. (2010). Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A, 107, 12704–12709. https://doi.org/10.1073/pnas.0910106107

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang, Y., Zhang, L., Li, Y., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International Journal of Cardiology, 192, 61–69. https://doi.org/10.1016/j.ijcard.2015.05.020

    Article  PubMed  Google Scholar 

  59. Zhao, M., Nakada, Y., Wei, Y., et al. (2021). Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction. Circulation, 210–228,. https://doi.org/10.1161/circulationaha.120.049497

  60. Kurtzwald-Josefson, E., Zeevi-Levin, N., Rubchevsky, V., et al. (2020). Cardiac fibroblast-induced pluripotent stem cell-derived exosomes as a potential therapeutic mean for heart failure. International Journal of Molecular Sciences, 21, 1–15. https://doi.org/10.3390/ijms21197215

    Article  CAS  Google Scholar 

  61. Lee, W. H., Chen, W.-Y., Shao, N.-Y., et al. (2017). Comparison of non-coding RNAs in exosomes and functional efficacy of human embryonic stem cell- versus induced pluripotent stem cell-derived cardiomyocytes. Stem Cells, 35, 2138–2149. https://doi.org/10.1002/stem.2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vaskova, E., Ikeda, G., Tada, Y., et al. (2020). Sacubitril/valsartan improves cardiac function and decreases myocardial fibrosis via downregulation of exosomal mir-181a in a rodent chronic myocardial infarction model. Journal of the American Heart Association, 9,. https://doi.org/10.1161/JAHA.119.015640

  63. Ma, T., Chen, Y., Chen, Y., et al. (2018). MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int, 2018,. https://doi.org/10.1155/2018/3290372

  64. Kanki, S., Jaalouk, D. E., Lee, S., et al. (2011). Identification of targeting peptides for ischemic myocardium by in vivo phage display. Journal of Molecular and Cellular Cardiology, 50, 841–848. https://doi.org/10.1016/j.yjmcc.2011.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, X., Chen, Y., Zhao, Z., et al. (2018). Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. Journal of the American Heart Association, 7, 1–16. https://doi.org/10.1161/JAHA.118.008737

    Article  Google Scholar 

  66. Vandergriff, A., Huang, K., Shen, D., et al. (2018). Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics, 8, 1869–1878. https://doi.org/10.7150/thno.20524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Antes, T. J., Middleton, R. C., Luther, K. M., et al. (2018). Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnology, 16, 1–15. https://doi.org/10.1186/s12951-018-0388-4

    Article  CAS  Google Scholar 

  68. Kim, H., Yun, N., Mun, D., et al. (2018). Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochemical and Biophysical Research Communications, 499, 803–808. https://doi.org/10.1016/j.bbrc.2018.03.227

    Article  CAS  PubMed  Google Scholar 

  69. Mentkowski, K. I., & Lang, J. K. (2019). Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Science and Reports, 9, 10041. https://doi.org/10.1038/s41598-019-46407-1

    Article  CAS  Google Scholar 

  70. Chen, C. W., Wang, L. L., Zaman, S., et al. (2018). Sustained release of endothelial progenitor cell-derived extracellular vesicles from shear-thinning hydrogels improves angiogenesis and promotes function after myocardial infarction. Cardiovascular Research, 114, 1029–1040. https://doi.org/10.1093/cvr/cvy067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Fangfei Wei (from University of Leuven, Belgium) for reviewing and modification of the manuscript.

Funding

The present study was funded by the National Natural Science Foundation of China (Nos. 81770394, 82000260) and Guangdong Basic and Applied Basic Research Foundation (2021A1515010755).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Chen Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Xue, R., Huang, P. et al. Modified Exosomes: a Good Transporter for miRNAs within Stem Cells to Treat Ischemic Heart Disease. J. of Cardiovasc. Trans. Res. 15, 514–523 (2022). https://doi.org/10.1007/s12265-022-10216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10216-1

Keywords

Navigation