Skip to main content

Advertisement

Log in

Correlation Between Wall Shear Stress and Acute Degradation of the Endothelial Glycocalyx During Cardiopulmonary Bypass

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

A Correction to this article was published on 12 July 2021

This article has been updated

Abstract

Wall shear stress (WSS) plays a key role in maintaining glycocalyx function, gene expression, and structure. Experimental studies have discussed the relationship between the shedding of the endothelial glycocalyx (EG) and WSS. However, rare literature about how WSS affects the EG during cardiopulmonary bypass (CPB) was mentioned. This study aimed to investigate the correlation between the WSS of carotid arteries and shedding of the EG during CPB in humans. The WSS level was calculated in accordance with an equation. The plasma concentrations of heparan sulfate, syndecan-1, and nitric oxide were measured to reflect shedding of the EG at six time points. A negative correlation was observed between the peak wall shear stress (PWSS) and syndecan-1 (R = − 0.5, p < 0.01) and heparan sulfate (R = − 0.461, p < 0.01) during CPB. The WSS is closely associated with the components of glycocalyx shedding during CPB. The WSS produced by non-pulsatile flow during CPB may contribute to the degradation of EG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

Abbreviations

WSS:

Wall shear stress

PWSS:

Peak wall shear stress

MWSS:

Mean wall shear stress

EG:

Endothelial glycocalyx

CPB:

Cardiopulmonary bypass

HS:

Heparan sulfate

NO:

Nitric oxide

ECG:

Electrocardiogram

ICU:

Intensive care unit

SIRS:

Systemic inflammatory reaction syndrome

References

  1. Gao, L., & Lipowsky, H. H. (2010). Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvascular Research, 80(3), 394–401. https://doi.org/10.1016/j.mvr.2010.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Curry, F. E., & Adamson, R. H. (2012). Endothelial glycocalyx: Permeability barrier and mechanosensor. Annals of Biomedical Engineering, 40(4), 828–839. https://doi.org/10.1007/s10439-011-0429-8.

    Article  CAS  PubMed  Google Scholar 

  3. Lipowsky, H. H. (2011). Protease activity and the role of the endothelial glycocalyx in inflammation. Drug Discov Today Dis Models, 8(1), 57–62. https://doi.org/10.1016/j.ddmod.2011.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lipowsky, H. H. (2012). The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Annals of Biomedical Engineering, 40(4), 840–848. https://doi.org/10.1007/s10439-011-0427-x.

    Article  PubMed  Google Scholar 

  5. Zhang, J. X., Qu, X. L., Chu, P., Xie, D. J., Zhu, L. L., Chao, Y. L., et al. (2018). Low shear stress induces vascular eNOS uncoupling via autophagy-mediated eNOS phosphorylation. Biochimica et Biophysica Acta, 1865(5), 709–720. https://doi.org/10.1016/j.bbamcr.2018.02.005.

    Article  CAS  PubMed  Google Scholar 

  6. Bartosch, A. M. W., Mathews, R., & Tarbell, J. M. (2017). Endothelial glycocalyx-mediated nitric oxide production in response to selective AFM pulling. Biophysical Journal, 113(1), 101–108. https://doi.org/10.1016/j.bpj.2017.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell-Puleri, S., Dela Paz, N. G., Adams, D., Chattopadhyay, M., Cancel, L., Ebong, E., et al. (2017). Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. American Journal of Physiology. Heart and Circulatory Physiology, 312(3), H485–H500. https://doi.org/10.1152/ajpheart.00035.2016.

    Article  PubMed  Google Scholar 

  8. Gouverneur, M., Spaan, J. A., Pannekoek, H., Fontijn, R. D., & Vink, H. (2006). Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. American Journal of Physiology. Heart and Circulatory Physiology, 290(1), H458–H452. https://doi.org/10.1152/ajpheart.00592.2005.

    Article  CAS  PubMed  Google Scholar 

  9. Nikmanesh, M., Shi, Z. D., & Tarbell, J. M. (2012). Heparan sulfate proteoglycan mediates shear stress-induced endothelial gene expression in mouse embryonic stem cell-derived endothelial cells. Biotechnology and Bioengineering, 109(2), 583–594. https://doi.org/10.1002/bit.23302.

    Article  CAS  PubMed  Google Scholar 

  10. Yang, H., Zhu, L., Chao, Y., Gu, Y., Kong, X., Chen, M., et al. (2018). Hyaluronidase2 (Hyal2) modulates low shear stress-induced glycocalyx impairment via the LKB1/AMPK/NADPH oxidase-dependent pathway. Journal of Cellular Physiology, 233(12), 9701–9715. https://doi.org/10.1002/jcp.26944.

    Article  CAS  PubMed  Google Scholar 

  11. Lipowsky, H. H. (2005). Microvascular rheology and hemodynamics. Microcirculation, 12(1), 5–15. https://doi.org/10.1080/10739680590894966.

    Article  PubMed  Google Scholar 

  12. Bai, K., & Wang, W. (2014). Shear stress-induced redistribution of the glycocalyx on endothelial cells in vitro. Biomechanics and Modeling in Mechanobiology, 13(2), 303–311. https://doi.org/10.1007/s10237-013-0502-3.

    Article  PubMed  Google Scholar 

  13. Kong, X., Chen, L., Ye, P., Wang, Z., Zhang, J., Ye, F., et al. (2016). The role of HYAL2 in LSS-induced glycocalyx impairment and the PKA-mediated decrease in eNOS-Ser-633 phosphorylation and nitric oxide production. Molecular Biology of the Cell, 27(25), 3972–3979. https://doi.org/10.1091/mbc.E16-04-0241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, H., Zhu, L., Gu, Y., Kong, X., Yan, L., Chen, M., et al. (2019). Berberine inhibits low shear stress-induced glycocalyx degradation via modulating AMPK and p47(phox)/Hyal2 signal pathway. European Journal of Pharmacology, 856, 172413. https://doi.org/10.1016/j.ejphar.2019.172413.

    Article  CAS  PubMed  Google Scholar 

  15. Rehm, M., Bruegger, D., Christ, F., Conzen, P., Thiel, M., Jacob, M., et al. (2007). Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation, 116(17), 1896–1906. https://doi.org/10.1161/CIRCULATIONAHA.106.684852.

    Article  CAS  PubMed  Google Scholar 

  16. Kaushal, S., & Wehman, B. (2015). Cardiopulmonary bypass and the endothelial glycocalyx: Shedding new light. The Journal of Thoracic and Cardiovascular Surgery, 150(6), 1482–1483. https://doi.org/10.1016/j.jtcvs.2015.09.071.

    Article  PubMed  Google Scholar 

  17. Dekker, N. A. M., Veerhoek, D., Koning, N. J., van Leeuwen, A. L. I., Elbers, P. W. G., van den Brom, C. E., et al. (2019). Postoperative microcirculatory perfusion and endothelial glycocalyx shedding following cardiac surgery with cardiopulmonary bypass. Anaesthesia. https://doi.org/10.1111/anae.14577.

  18. Assmann, A., Benim, A. C., Gul, F., Lux, P., Akhyari, P., Boeken, U., et al. (2012). Pulsatile extracorporeal circulation during on-pump cardiac surgery enhances aortic wall shear stress. Journal of Biomechanics, 45(1), 156–163. https://doi.org/10.1016/j.jbiomech.2011.09.021.

    Article  PubMed  Google Scholar 

  19. Leguy, C. A., Bosboom, E. M., Hoeks, A. P., & van de Vosse, F. N. (2009). Model-based assessment of dynamic arterial blood volume flow from ultrasound measurements. Medical & Biological Engineering & Computing, 47(6), 641–648. https://doi.org/10.1007/s11517-009-0473-9.

    Article  CAS  Google Scholar 

  20. Ariff, B. B., Zambanini, A., Sever, P. S., Thom, S. A., & Hughes, A. D. J. A. J. o. H. (2002). The effects of pulsatile flow on shear stress within the carotid artery., 15(4), A68–A68.

  21. Reneman, R. S., van Merode, T., Hick, P., & Hoeks, A. P. (1985). Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages. Circulation, 71(3), 500–509. https://doi.org/10.1161/01.cir.71.3.500.

    Article  CAS  PubMed  Google Scholar 

  22. Lerman, A., & Zeiher, A. M. (2005). Endothelial function: Cardiac events. Circulation, 111(3), 363–368. https://doi.org/10.1161/01.CIR.0000153339.27064.14.

    Article  PubMed  Google Scholar 

  23. Rubio-Gayosso, I., Platts, S. H., & Duling, B. R. (2006). Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. American Journal of Physiology. Heart and Circulatory Physiology, 290(6), H2247–H2256. https://doi.org/10.1152/ajpheart.00796.2005.

    Article  CAS  PubMed  Google Scholar 

  24. Uchimido, R., Schmidt, E. P., & Shapiro, N. I. (2019). The glycocalyx: A novel diagnostic and therapeutic target in sepsis. Critical Care, 23(1), 16. https://doi.org/10.1186/s13054-018-2292-6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sangalli, F., Guazzi, M., Senni, S., Sala, W., Caruso, R., Costa, M. C., et al. (2015). Assessing endothelial responsiveness after cardiopulmonary bypass: Insights on different perfusion modalities. Journal of Cardiothoracic and Vascular Anesthesia, 29(4), 912–916. https://doi.org/10.1053/j.jvca.2014.11.008.

    Article  PubMed  Google Scholar 

  26. Elhadj, S., Mousa, S. A., Biochemistry, K. F.-W. J., & J. o. C. Chronic pulsatile shear stress impacts synthesis of proteoglycans by endothelial cells: Effect on platelet aggregation and coagulation., 86(2), 239–250.

  27. Frati-Munari, A. C. (2013). Medical significance of endothelial glycocalyx. Archivos de Cardiología de México, 83(4), 303–312. https://doi.org/10.1016/j.acmx.2013.04.015.

    Article  PubMed  Google Scholar 

  28. Becker, B. F., Jacob, M., Leipert, S., Salmon, A. H., & Chappell, D. (2015). Degradation of the endothelial glycocalyx in clinical settings: Searching for the sheddases. British Journal of Clinical Pharmacology, 80(3), 389–402. https://doi.org/10.1111/bcp.12629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Noble, L. J., Mautes, A. E., & Hall, J. J. (1996). Characterization of the microvascular glycocalyx in normal and injured spinal cord in the rat. The Journal of Comparative Neurology, 376(4), 542–556. https://doi.org/10.1002/(SICI)1096-9861(19961223)376:4<542::AID-CNE4>3.0.CO;2-1.

    Article  CAS  PubMed  Google Scholar 

  30. Potter, D. R., Jiang, J., & Damiano, E. R. (2009). The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circulation Research, 104(11), 1318–1325. https://doi.org/10.1161/CIRCRESAHA.108.191585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramnath, R., Foster, R. R., Qiu, Y., Cope, G., Butler, M. J., Salmon, A. H., et al. (2014). Matrix metalloproteinase 9-mediated shedding of syndecan 4 in response to tumor necrosis factor alpha: A contributor to endothelial cell glycocalyx dysfunction. The FASEB Journal, 28(11), 4686–4699. https://doi.org/10.1096/fj.14-252221.

    Article  CAS  PubMed  Google Scholar 

  32. Mulivor, A. W., & Lipowsky, H. H. (2009). Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation, 16(8), 657–666. https://doi.org/10.3109/10739680903133714.

    Article  CAS  PubMed  Google Scholar 

  33. Reitsma, S., Slaaf, D. W., Vink, H., van Zandvoort, M. A., & Oude Egbrink, M. G. (2007). The endothelial glycocalyx: Composition, functions, and visualization. Pflügers Archiv, 454(3), 345–359. https://doi.org/10.1007/s00424-007-0212-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chou, P. H., Wang, S. T., Yen, M. H., Liu, C. L., Chang, M. C., & Lee, O. K. (2016). Fluid-induced, shear stress-regulated extracellular matrix and matrix metalloproteinase genes expression on human annulus fibrosus cells. Stem Cell Research & Therapy, 7, 34. https://doi.org/10.1186/s13287-016-0292-5.

    Article  CAS  Google Scholar 

  35. Florian, J. A., Kosky, J. R., Ainslie, K., Pang, Z., Dull, R. O., & Tarbell, J. M. (2003). Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circulation Research, 93(10), e136–e142. https://doi.org/10.1161/01.RES.0000101744.47866.D5.

    Article  CAS  PubMed  Google Scholar 

  36. Myers, G. J., & Wegner, J. (2017). Endothelial glycocalyx and cardiopulmonary bypass. The Journal of Extra-Corporeal Technology, 49(3), 174–181.

    PubMed  PubMed Central  Google Scholar 

  37. Sallisalmi, M., Tenhunen, J., Yang, R., Oksala, N., & Pettila, V. (2012). Vascular adhesion protein-1 and syndecan-1 in septic shock. Acta Anaesthesiologica Scandinavica, 56(3), 316–322. https://doi.org/10.1111/j.1399-6576.2011.02578.x.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, Y. H., Nijst, P., Kiefer, K., & Tang, W. H. (2017). Endothelial glycocalyx as biomarker for cardiovascular diseases: Mechanistic and clinical implications. Current Heart Failure Reports, 14(2), 117–126. https://doi.org/10.1007/s11897-017-0320-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Flammer, A. J., Anderson, T., Celermajer, D. S., Creager, M. A., Deanfield, J., Ganz, P., et al. (2012). The assessment of endothelial function: From research into clinical practice. Circulation, 126(6), 753–767. https://doi.org/10.1161/CIRCULATIONAHA.112.093245.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We wish to thank the Medical Research Collaborating Center, The First Affiliated Hospital of Wenzhou Medical University, for providing statistical consultation services.

Funding

This study was supported by the Wenzhou Science and Technology Bureau of China (No.y20160134).

Author information

Authors and Affiliations

Authors

Contributions

(I) Conception and design: GL He and WJ Wang

(II) Administrative support: WJ Wang

(III) Provision of study materials or patients: GL He, LN Lin, and WJ Wang;

(IV) Collection and assembly of data: GL He and LN Lin

(V) Data analysis and interpretation: GL He and WJ Wang

(VI) Manuscript writing: All authors

(VII) Final approval of manuscript: All authors

Corresponding authors

Correspondence to Lina Lin or Weijian Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The study protocol was reviewed by our institutional review board and approved as a prospective study (approval number: 2016056). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: This article was updated after its original publication to add Lina Lin as co-corresponding author (at: wzlinlina@163.com).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Gao, Y., Feng, L. et al. Correlation Between Wall Shear Stress and Acute Degradation of the Endothelial Glycocalyx During Cardiopulmonary Bypass. J. of Cardiovasc. Trans. Res. 13, 1024–1032 (2020). https://doi.org/10.1007/s12265-020-10027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10027-2

Keywords

Navigation