Skip to main content

Advertisement

Log in

Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications

  • Biomarkers of Heart Failure (W H W Tang and J Grodin, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Introduction

The endothelial surface layer is covered with abundant proteoglycans, of which syndecans and glycosaminoglycans are major constituents.

Recent Findings

Among the endothelial glycocalyx (eGC) constituents, syndecan-1 (sdc1) is a main component, and an elevated serum level of sdc1 may indicate the degradation of eGC. In patients with ischemic heart disease or heart failure, elevation of serum sdc1 has been associated with worsening cardiac and renal function; however, the causal relationship between degradation of eGC and clinical outcomes is unclear.

Summary

Herein, we review the previous literature on eGC in cardiovascular and noncardiovascular diseases and their clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol. 2003;23(9):1541–7.

    Article  CAS  PubMed  Google Scholar 

  2. Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18(8):1217–23.

    Article  CAS  PubMed  Google Scholar 

  3. Korte S, Wiesinger A, Straeter AS, Peters W, Oberleithner H, Kusche-Vihrog K. Firewall function of the endothelial glycocalyx in the regulation of sodium homeostasis. Pflugers Arch - Eur J Physiol. 2012;463(2):269–78.

    Article  CAS  Google Scholar 

  4. Siegel G, Malmsten M, Ermilov E. Anionic biopolyelectrolytes of the syndecan/perlecan superfamily: physicochemical properties and medical significance. Adv Colloid Interf Sci. 2014;205:275–318.

    Article  CAS  Google Scholar 

  5. Maksimenko AV, Turashev AD. No-reflow phenomenon and endothelial glycocalyx of microcirculation. Biochem Res int. 2012;2012:859231.

    Article  PubMed  Google Scholar 

  6. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci U S A. 2003;100(13):7988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res. 2003;93(10):e136–142.

    Article  CAS  PubMed  Google Scholar 

  8. Neves FM, Meneses GC, Sousa NE, et al. Syndecan-1 in acute decompensated heart failure—association with renal function and mortality. Circ J: Off J Jpn Circ Soc. 2015;79(7):1511–9.

    Article  Google Scholar 

  9. Tromp J, van der Pol A, Klip IT, et al. Fibrosis marker syndecan-1 and outcome in patients with heart failure with reduced and preserved ejection fraction. Circ Heart Fail. 2014;7(3):457–62.

    Article  CAS  PubMed  Google Scholar 

  10. Meyer S, van der Meer P, van Deursen VM, et al. Neurohormonal and clinical sex differences in heart failure. Eur Heart J. 2013;34(32):2538–47.

    Article  CAS  PubMed  Google Scholar 

  11. Bielecka-Dabrowa A, von Haehling S, Aronow WS, Ahmed MI, Rysz J, Banach M. Heart failure biomarkers in patients with dilated cardiomyopathy. Int J Cardiol. 2013;168(3):2404–10.

    Article  PubMed  Google Scholar 

  12. Demissei BG, Valente MA, Cleland JG, et al. Optimizing clinical use of biomarkers in high-risk acute heart failure patients. Eur J Heart Fail 2015.

  13. Bielecka-Dabrowa A, Gluba-Brzozka A, Michalska-Kasiczak M, Misztal M, Rysz J, Banach M. The multi-biomarker approach for heart failure in patients with hypertension. Int J Mol Sci. 2015;16(5):10715–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ostrowski SR, Pedersen SH, Jensen JS, Mogelvang R, Johansson PI. Acute myocardial infarction is associated with endothelial glycocalyx and cell damage and a parallel increase in circulating catecholamines. Crit Care. 2013;17(1):R32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chignalia AZ, Yetimakman F, Christiaans SC, et al.: The glycocalyx and trauma: a review. Shock 2015.

  16. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200.

    Article  PubMed  Google Scholar 

  17. Darwiche SS, Ruan X, Hoffman MK, et al. Selective roles for toll-like receptors 2, 4, and 9 in systemic inflammation and immune dysfunction following peripheral tissue injury. J Trauma Acute Care Surg. 2013;74(6):1454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stepp MA, Pal-Ghosh S, Tadvalkar G, Pajoohesh-Ganji A. Syndecan-1 and its expanding list of contacts. Adv Wound Care. 2015;4(4):235–49.

    Article  Google Scholar 

  19. Park PW, Pier GB, Hinkes MT, Bernfield M. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature. 2001;411(6833):98–102.

    Article  CAS  PubMed  Google Scholar 

  20. Hayashida K, Parks WC, Park PW. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood. 2009;114(14):3033–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Teng YH, Aquino RS, Park PW. Molecular functions of syndecan-1 in disease. Matrix Biol: J Int Soc Matrix Biol. 2012;31(1):3–16.

    Article  CAS  Google Scholar 

  22. Stepp MA, Gibson HE, Gala PH, et al. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J Cell Sci. 2002;115(Pt 23):4517–31.

    Article  CAS  PubMed  Google Scholar 

  23. Szarvas T, Reis H, Kramer G, et al. Enhanced stromal syndecan-1 expression is an independent risk factor for poor survival in bladder cancer. Hum Pathol. 2014;45(4):674–82.

    Article  CAS  PubMed  Google Scholar 

  24. Nault JC, Guyot E, Laguillier C, et al. Serum proteoglycans as prognostic biomarkers of hepatocellular carcinoma in patients with alcoholic cirrhosis. Cancer Epidemiol Biomarkers Prev. 2013;22(8):1343–52.

    Article  CAS  PubMed  Google Scholar 

  25. Mahtouk K, Hose D, Raynaud P, et al. Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood. 2007;109(11):4914–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jilani I, Wei C, Bekele BN, et al. Soluble syndecan-1 (sCD138) as a prognostic factor independent of mutation status in patients with chronic lymphocytic leukemia. Int J Lab Hematol. 2009;31(1):97–105.

    Article  CAS  PubMed  Google Scholar 

  27. Andersen NF, Kristensen IB, Preiss BS, Christensen JH, Abildgaard N. Upregulation of Syndecan-1 in the bone marrow microenvironment in multiple myeloma is associated with angiogenesis. Eur J Haematol. 2015;95(3):211–7.

    Article  CAS  PubMed  Google Scholar 

  28. Larsen AM, Leinoe EB, Johansson PI, Birgens H, Ostrowski SR. High syndecan-1 levels in acute myeloid leukemia are associated with bleeding, thrombocytopathy, endothelial cell damage, and leukocytosis. Leuk Res. 2013;37(7):777–83.

    Article  CAS  PubMed  Google Scholar 

  29. Akl MR, Nagpal P, Ayoub NM, et al. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget. 2015;6(30):28693–715.

    PubMed  PubMed Central  Google Scholar 

  30. •• Shinyo Y, Kodama J, Hasengaowa, Kusumoto T, Hiramatsu Y. Loss of cell-surface heparan sulfate expression in both cervical intraepithelial neoplasm and invasive cervical cancer. Gynecol Oncol. 2005;96(3):776–83. Important review providing excellent overview of the Endothelial glycocalyx and its components.

  31. Wang X, Zuo D, Chen Y, et al. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. Br J Cancer. 2014;111(10):1965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Hashimoto Y, Skacel M, Adams JC. Association of loss of epithelial syndecan-1 with stage and local metastasis of colorectal adenocarcinomas: an immunohistochemical study of clinically annotated tumors. BMC Cancer. 2008;8:185. This study investigated functional significance of syndecan-1 in inflammatory process, and the results help to understand the role of endothelial glycocalyx in tissue injury and repair.

  33. Langford JK, Stanley MJ, Cao D, Sanderson RD. Multiple heparan sulfate chains are required for optimal syndecan-1 function. J Biol Chem. 1998;273(45):29965–71.

    Article  CAS  PubMed  Google Scholar 

  34. Nikolova V, Koo CY, Ibrahim SA, et al. Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression. Carcinogenesis. 2009;30(3):397–407.

    Article  CAS  PubMed  Google Scholar 

  35. Purushothaman A, Uyama T, Kobayashi F, et al. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood. 2010;115(12):2449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maeda T, Desouky J, Friedl A. Syndecan-1 expression by stromal fibroblasts promotes breast carcinoma growth in vivo and stimulates tumor angiogenesis. Oncogene. 2006;25(9):1408–12.

    Article  CAS  PubMed  Google Scholar 

  37. Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80(3):389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fukai N, Kenagy RD, Chen L, Gao L, Daum G, Clowes AW. Syndecan-1: an inhibitor of arterial smooth muscle cell growth and intimal hyperplasia. Arterioscler Thromb Vasc Biol. 2009;29(9):1356–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Angsana J, Chen J, Smith S, et al. Syndecan-1 modulates the motility and resolution responses of macrophages. Arterioscler Thromb Vasc Biol. 2015;35(2):332–40.

    Article  CAS  PubMed  Google Scholar 

  40. Vanhoutte D, Schellings MW, Gotte M, et al. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation. 2007;115(4):475–82.

    Article  CAS  PubMed  Google Scholar 

  41. Schellings MW, Vanhoutte D, van Almen GC, et al. Syndecan-1 amplifies angiotensin II-induced cardiac fibrosis. Hypertension. 2010;55(2):249–56.

    Article  CAS  PubMed  Google Scholar 

  42. Jacob M, Saller T, Chappell D, Rehm M, Welsch U, Becker BF. Physiological levels of A-, B- and C-type natriuretic peptide shed the endothelial glycocalyx and enhance vascular permeability. Basic Res Cardiol. 2013;108(3):347.

    Article  PubMed  Google Scholar 

  43. Jacob M, Rehm M, Loetsch M, et al. The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res. 2007;44(6):435–43.

    Article  CAS  PubMed  Google Scholar 

  44. Becker BF, Chappell D, Jacob M. Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol. 2010;105(6):687–701.

    Article  CAS  PubMed  Google Scholar 

  45. • Hollmann J, Schmidt A, von Bassewitz DB, Buddecke E. Relationship of sulfated glycosaminoglycans and cholesterol content in normal and arteriosclerotic human aorta. Arteriosclerosis. 1989;9(2):154–8. Clinical investigation into the utility of syndecan-1 as a biomarker in acute decompensated heart failure.

  46. • Papakonstantinou E, Roth M, Block LH, Mirtsou-Fidani V, Argiriadis P, Karakiulakis G. The differential distribution of hyaluronic acid in the layers of human atheromatic aortas is associated with vascular smooth muscle cell proliferation and migration. Atherosclerosis. 1998;138(1):79–89. Clinical investigation into the utility of syndecan-1 as a biomarker in acute decompensated heart failure.

  47. • Soto Y, Mesa N, Alfonso Y, et al. Targeting arterial wall sulfated glycosaminoglycans in rabbit atherosclerosis with a mouse/human chimeric antibody. mAbs. 2014;6(5):1340–6. Clinical investigation into the utility of syndecan-1 as a biomarker in acute decompensated heart failure.

  48. Miranda CH, de Carvalho BM, Schmidt A, Marin-Neto JA, Pazin-Filho A. Evaluation of the endothelial glycocalyx damage in patients with acute coronary syndrome. Atherosclerosis. 2016;247:184–8.

    Article  CAS  PubMed  Google Scholar 

  49. • Vink H, Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res. 1996;79(3):581–9. Endothelial glycocalyx was demonstrated as true interface between blood and capillary walls.

  50. Vink H, Duling BR. Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Phys Heart Circ Phys. 2000;278(1):H285–289.

    CAS  Google Scholar 

  51. Oberleithner H. Two barriers for sodium in vascular endothelium? Ann Med. 2012;44 Suppl 1:S143–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ebong EE, Macaluso FP, Spray DC, Tarbell JM. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol. 2011;31(8):1908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gretz JE, Duling BR. Measurement uncertainties associated with the use of bright-field and fluorescence microscopy in the microcirculation. Microvasc Res. 1995;49(1):134–40.

    Article  CAS  PubMed  Google Scholar 

  54. Kataoka H, Ushiyama A, Kawakami H, Akimoto Y, Matsubara S, Iijima T. Fluorescent imaging of endothelial glycocalyx layer with wheat germ agglutinin using intravital microscopy. Microsc Res Tech. 2016;79(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  55. Nieuwdorp M, Meuwese MC, Mooij HL, et al. Measuring endothelial glycocalyx dimensions in humans: a potential novel tool to monitor vascular vulnerability. J Appl Physiol. 2008;104(3):845–52.

    Article  PubMed  Google Scholar 

  56. Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. Damage of the endothelial glycocalyx in dialysis patients. J Am Soc Nephrol: JASN. 2012;23(11):1900–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rehm M, Haller M, Orth V, et al. Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology. 2001;95(4):849–56.

    Article  CAS  PubMed  Google Scholar 

  58. Nieuwdorp M, van Haeften TW, Gouverneur MC, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55(2):480–6.

    Article  CAS  PubMed  Google Scholar 

  59. Michel CC, Curry FR. Glycocalyx volume: a critical review of tracer dilution methods for its measurement. Microcirculation. 2009;16(3):213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007;115(7):928–35.

    Article  PubMed  Google Scholar 

  61. Harrell Jr FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.

    Article  PubMed  Google Scholar 

  62. Leening MJ, Vedder MM, Witteman JC, Pencina MJ, Steyerberg EW. Net reclassification improvement: computation, interpretation, and controversies: a literature review and clinician’s guide. Ann Intern Med. 2014;160(2):122–31.

    Article  PubMed  Google Scholar 

  63. Pencina MJ, D’Agostino Sr RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11–21.

    Article  PubMed  Google Scholar 

  64. Pencina MJ, D’Agostino Sr RB, D’Agostino Jr RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157–72. discussion 207–112.

    Article  PubMed  Google Scholar 

  65. Bethell DB, Gamble J, Pham PL, et al. Noninvasive measurement of microvascular leakage in patients with dengue hemorrhagic fever. Clin infect Dis: Off Publ Infect Dis Soc Am. 2001;32(2):243–53.

    Article  CAS  Google Scholar 

  66. Takishima I, Nakamura T, Hirano M, et al. Predictive value of serial assessment of endothelial function in chronic heart failure. Int J Cardiol. 2012;158(3):417–22.

    Article  PubMed  Google Scholar 

  67. Salmito FT, de Oliveira Neves FM, Meneses GC, de Almeida Leitao R, Martins AM, Liborio AB. Glycocalyx injury in adults with nephrotic syndrome: association with endothelial function. Clin Chim Acta; Int J Clin Chem. 2015;447:55–8.

    Article  CAS  Google Scholar 

  68. Pahwa R, Nallasamy P, Jialal I: Toll-like receptors 2 and 4 mediate hyperglycemia induced macrovascular aortic endothelial cell inflammation and perturbation of the endothelial glycocalyx. J Diabetes Complicat. 2016.

  69. Lee JF, Barrett-O’Keefe Z, Garten RS, et al. Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart. 2015.

  70. Marechaux S, Samson R, van Belle E, et al. Vascular and microvascular endothelial function in heart failure with preserved ejection fraction. J Card Fail. 2016;22(1):3–11.

    Article  PubMed  Google Scholar 

  71. Titze J, Machnik A. Sodium sensing in the interstitium and relationship to hypertension. Curr Opin Nephrol Hypertens. 2010;19(4):385–92.

    Article  PubMed  Google Scholar 

  72. Heer M, Baisch F, Kropp J, Gerzer R, Drummer C. High dietary sodium chloride consumption may not induce body fluid retention in humans. Am J Physiol Renal physiol. 2000;278(4):F585–595.

    CAS  PubMed  Google Scholar 

  73. Machnik A, Neuhofer W, Jantsch J, et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med. 2009;15(5):545–52.

    Article  CAS  PubMed  Google Scholar 

  74. • Titze J, Shakibaei M, Schafflhuber M, et al. Glycosaminoglycan polymerization may enable osmotically inactive Na + storage in the skin. Am J Phys Heart Circ Phys. 2004;287(1):H203–208. This study suggested endothelial glycocalyx can store osmotically inactive sodium by demonstrating glycocalyx in skin work as a sodium reservoir.

  75. Olde Engberink RH, Rorije NM. Homan van der Heide JJ, van den Born BJ, Vogt L: Role of the vascular wall in sodium homeostasis and salt sensitivity. J Am Soc Nephrol: JASN. 2015;26(4):777–83.

    Article  CAS  PubMed  Google Scholar 

  76. Siegel G, Walter A, Kauschmann A, Malmsten M, Buddecke E. Anionic biopolymers as blood flow sensors. Biosens bioelectron. 1996;11(3):281–94.

    Article  CAS  PubMed  Google Scholar 

  77. Siegel G, Malmsten M, Klussendorf D, Walter A, Schnalke F, Kauschmann A. Blood-flow sensing by anionic biopolymers. J Auton Nerv Syst. 1996;57(3):207–13.

    Article  CAS  PubMed  Google Scholar 

  78. Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch - Eur J Physiol. 2000;440(5):653–66.

    Article  CAS  Google Scholar 

  79. Jeansson M, Haraldsson B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am J Physiol Renal Physiol. 2006;290(1):F111–116.

    Article  CAS  PubMed  Google Scholar 

  80. Xu C, Wu X, Hack BK, Bao L, Cunningham PN. TNF causes changes in glomerular endothelial permeability and morphology through a Rho and myosin light chain kinase-dependent mechanism. Phys Rep. 2015;3(12).

  81. Adamson RH. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J Physiol. 1990;428:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nieuwdorp M, Mooij HL, Kroon J, et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes. 2006;55(4):1127–32.

    Article  CAS  PubMed  Google Scholar 

  83. Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18(5):538.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Oberleithner H, Peters W, Kusche-Vihrog K, et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Arch - Eur J Physiol. 2011;462(4):519–28.

    Article  CAS  Google Scholar 

  85. Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation. 2007;116(17):1896–906.

    Article  CAS  PubMed  Google Scholar 

  86. Grundmann S, Fink K, Rabadzhieva L, et al. Perturbation of the endothelial glycocalyx in post cardiac arrest syndrome. Resuscitation. 2012;83(6):715–20.

    Article  PubMed  Google Scholar 

  87. Annecke T, Fischer J, Hartmann H, et al. Shedding of the coronary endothelial glycocalyx: effects of hypoxia/reoxygenation vs ischaemia/reperfusion. Br J Anaesth. 2011;107(5):679–86.

    Article  CAS  PubMed  Google Scholar 

  88. Becker BF, Fischer J, Hartmann H, et al. Inosine, not adenosine, initiates endothelial glycocalyx degradation in cardiac ischemia and hypoxia. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1161–7.

    Article  CAS  PubMed  Google Scholar 

  89. Gilles S, Zahler S, Welsch U, Sommerhoff CP, Becker BF. Release of TNF-alpha during myocardial reperfusion depends on oxidative stress and is prevented by mast cell stabilizers. Cardiovasc Res. 2003;60(3):608–16.

    Article  CAS  PubMed  Google Scholar 

  90. Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Prac. 2013;2013:892710.

    Google Scholar 

  91. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–31.

    Article  PubMed  Google Scholar 

  92. Wiesinger A, Peters W, Chappell D, et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One. 2013;8(11):e80905.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chappell D, Jacob M, Hofmann-Kiefer K, et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology. 2007;107(5):776–84.

    Article  CAS  PubMed  Google Scholar 

  94. Zeng Y, Liu XH, Tarbell J, Fu B. Sphingosine 1-phosphate induced synthesis of glycocalyx on endothelial cells. Exp Cell Res. 2015;339(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  95. Zeng Y, Adamson RH, Curry FR, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Phys Heart Circ Phys. 2014;306(3):H363–372.

    CAS  Google Scholar 

  96. Torres LN, Sondeen JL, Ji L, Dubick MA, Torres Filho I. Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow, and coagulation function after hemorrhagic shock in rats. J Trauma Acute Care surg. 2013;75(5):759–66.

    Article  CAS  PubMed  Google Scholar 

  97. Torres Filho I, Torres LN, Sondeen JL, Polykratis IA, Dubick MA. In vivo evaluation of venular glycocalyx during hemorrhagic shock in rats using intravital microscopy. Microvasc Res. 2013;85:128–33.

    Article  PubMed  Google Scholar 

  98. Straat M, Muller MC, Meijers JC, et al. Effect of transfusion of fresh frozen plasma on parameters of endothelial condition and inflammatory status in non-bleeding critically ill patients: a prospective substudy of a randomized trial. Crit Care. 2015;19:163.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Chappell D, Hofmann-Kiefer K, Jacob M, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol. 2009;104(1):78–89.

    Article  CAS  PubMed  Google Scholar 

  100. Chappell D, Dorfler N, Jacob M, et al. Glycocalyx protection reduces leukocyte adhesion after ischemia/reperfusion. Shock. 2010;34(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  101. Potter DR, Jiang J, Damiano ER. The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res. 2009;104(11):1318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Giantsos-Adams KM, Koo AJ, Song S, et al. Heparan sulfate regrowth profiles under laminar shear flow following enzymatic degradation. Cell Mol Bioeng. 2013;6(2):160–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Koo A, Dewey Jr CF, Garcia-Cardena G. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol. 2013;304(2):C137–146.

    Article  CAS  PubMed  Google Scholar 

  104. Voyvodic PL, Min D, Liu R, et al. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem. 2014;289(14):9547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Ethics declarations

Conflict of Interest

Youn-Hyun Kim, Petra Nijst, and Kathryn Kiefer declare that they have no conflict of interest

W. H. Wilson Tang has received grants from the National Health Institutes (R01HL103931) outside of the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YH., Nijst, P., Kiefer, K. et al. Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications. Curr Heart Fail Rep 14, 117–126 (2017). https://doi.org/10.1007/s11897-017-0320-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-017-0320-5

Keywords

Navigation