Skip to main content

Advertisement

Log in

Involvement of p53 in the Responses of Cardiac Muscle Cells to Heat Shock Exposure and Heat Acclimation

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Intense heat stress induces damage to the heart, whereas mild to moderate heat stress protects the heart against subsequent ischemic injury. The mechanisms underlying the detrimental and beneficial effects of heat stress remain unclear. In this study, we investigated the role of p53 in the responses of cardiac muscle cells to acute heat exposure and heat acclimation (HA). Heat exposure increased the levels of caspase and annexin, and levels of cytosolic, nuclear, and mitochondrial p53 protein in H9c2 cells. Pifithrin-α or pifithrin-μ reduced heat-induced apoptotic response in these cells. HA reduced localization of p53 in the mitochondria and improved cell viability during heat exposure. The effects of heat exposure and HA on p53 were further verified in vivo in mouse heart tissue. These results suggest that p53 plays a role in heat-induced apoptosis in cardiac muscle cells. The protective effect of HA against heat injury likely involves a p53-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crandall, C. G., & Wilson, T. E. (2015). Human cardiovascular responses to passive heat stress. Comprehensive Physiology, 5(1), 17–43.

    PubMed  PubMed Central  Google Scholar 

  2. Qian, L., et al. (2004). Mitochondrial mechanism of heat stress-induced injury in rat cardiomyocyte. Cell Stress & Chaperones, 9(3), 281–293.

    Article  CAS  Google Scholar 

  3. Yu, T., Deuster, P., & Chen, Y. (2016). Role of dynamin-related protein 1-mediated mitochondrial fission in resistance of mouse C2C12 myoblasts to heat injury. The Journal of Physiology, 594(24), 7419–7433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Matsumoto, H., et al. (1994). p53 proteins accumulated by heat stress associate with heat shock proteins HSP72/HSC73 in human glioblastoma cell lines. Cancer Letters, 87(1), 39–46.

    Article  CAS  PubMed  Google Scholar 

  5. Brady, C. A., & Attardi, L. D. (2010). p53 at a glance. Journal of Cell Science, 123(Pt 15), 2527–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Racay, P., et al. (2007). Effect of ischemic preconditioning on mitochondrial dysfunction and mitochondrial p53 translocation after transient global cerebral ischemia in rats. Neurochemical Research, 32(11), 1823–1832.

    Article  CAS  PubMed  Google Scholar 

  7. Guo, X., Sesaki, H., & Qi, X. (2014). Drp1 stabilizes p53 on the mitochondria to trigger necrosis under oxidative stress conditions in vitro and in vivo. The Biochemical Journal, 461(1), 137–146.

    Article  CAS  PubMed  Google Scholar 

  8. Trangmar, S. J., et al. (2017). Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. Physiological Reports, 5(2), e13108.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Horowitz, M. (2016). Epigenetics and cytoprotection with heat acclimation. Journal of Applied Physiology, 120(6), 702–710.

    Article  CAS  PubMed  Google Scholar 

  10. Ong, S. G., et al. (2014). HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovascular Research, 104(1), 24–36.

    Article  CAS  PubMed  Google Scholar 

  11. Maloyan, A., et al. (2005). HIF-1alpha-targeted pathways are activated by heat acclimation and contribute to acclimation-ischemic cross-tolerance in the heart. Physiological Genomics, 23(1), 79–88.

    Article  CAS  PubMed  Google Scholar 

  12. Gross, E. R., & Gross, G. J. (2007). Ischemic preconditioning and myocardial infarction: an update and perspective. Drug Discovery Today: Disease Mechanisms, 4(3), 165–174.

    Article  PubMed  Google Scholar 

  13. Islam, A., et al. (2013). An exploration of heat tolerance in mice utilizing mRNA and microRNA expression analysis. PLoS One, 8(8), e72258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, Y., & Yu, T. (2017). Glucocorticoid receptor activation is associated with increased resistance to heat-induced hyperthermia and injury. Acta Physiologica (Oxford, England), 222(4), e13015.

    Article  Google Scholar 

  15. Komarov, P. G., et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science, 285(5434), 1733–1737.

    Article  CAS  PubMed  Google Scholar 

  16. Strom, E., et al. (2006). Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nature Chemical Biology, 2(9), 474–479.

    Article  CAS  PubMed  Google Scholar 

  17. Kuennen, M., et al. (2011). Thermotolerance and heat acclimation may share a common mechanism in humans. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 301(2), R524–R533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, Y., et al. (2005). p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Research, 65(9), 3745–3750.

    Article  CAS  PubMed  Google Scholar 

  19. Kanno, S., et al. (2015). Pifithrin-alpha has a p53-independent cytoprotective effect on docosahexaenoic acid-induced cytotoxicity in human hepatocellular carcinoma HepG2 cells. Toxicology Letters, 232(2), 393–402.

    Article  CAS  PubMed  Google Scholar 

  20. Dai, C., & Gu, W. (2010). p53 post-translational modification: deregulated in tumorigenesis. Trends in Molecular Medicine, 16(11), 528–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chipuk, J. E., et al. (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 309(5741), 1732–1735.

    Article  CAS  PubMed  Google Scholar 

  22. Nieminen, A. I., et al. (2013). Myc-induced AMPK-phospho p53 pathway activates Bak to sensitize mitochondrial apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 110(20), E1839–E1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Endo, H., et al. (2006). Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. The Journal of Neuroscience, 26(30), 7974–7983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miller, M. W., & Ziskin, M. C. (1989). Biological consequences of hyperthermia. Ultrasound in Medicine & Biology, 15(8), 707–722.

    Article  CAS  Google Scholar 

  25. Clowes Jr., G. H., & O'Donnell Jr., T. F. (1974). Heat stroke. The New England Journal of Medicine, 291(11), 564–567.

    Article  PubMed  Google Scholar 

  26. Chang, C. K., et al. (2007). Oxidative stress and ischemic injuries in heat stroke. Progress in Brain Research, 162(1), 525–546.

    Article  CAS  PubMed  Google Scholar 

  27. Moseley, P. L. (1997). Heat shock proteins and heat adaptation of the whole organism. J.Appl.Physiol, 83(5), 1413–1417.

    Article  CAS  PubMed  Google Scholar 

  28. Qi, Z., et al. (2011). Physical exercise regulates p53 activity targeting SCO2 and increases mitochondrial COX biogenesis in cardiac muscle with age. PLoS One, 6(7), e21140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Borras, C., Gomez-Cabrera, M. C., & Vina, J. (2011). The dual role of p53: DNA protection and antioxidant. Free Radical Research, 45(6), 643–652.

    Article  PubMed  Google Scholar 

  30. Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta, 1863(12), 2977–2992.

    Article  CAS  PubMed  Google Scholar 

  31. Yu, T., et al. (2018). Mitochondrial fission contributes to heat-induced oxidative stress in skeletal muscle but not hyperthermia in mice. Life Sciences, 200(1), 6–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Jacob Dohl for the technical assistance.

Funding

This work was supported by Congressionally Directed Medical Research Program Award W81XWH-14-2-0133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Disclaimer Statement

The opinions and assertions expressed herein are those of the author(s) and do not necessarily reflect the official policy or position of the Uniformed Services University or the Department of Defense.

The contents of this publication are the sole responsibility of the author(s) and do not necessarily reflect the views, opinions, or policies of The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Mention of trade names, commercial products, or organizations does not imply endorsement by the US Government.

Additional information

Associate Editor Nicola Smart oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yu, T. Involvement of p53 in the Responses of Cardiac Muscle Cells to Heat Shock Exposure and Heat Acclimation. J. of Cardiovasc. Trans. Res. 13, 928–937 (2020). https://doi.org/10.1007/s12265-020-10003-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10003-w

Keywords

Navigation