Skip to main content
Log in

Effect of Ischemic Preconditioning on Mitochondrial Dysfunction and Mitochondrial P53 Translocation after Transient Global Cerebral Ischemia in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Transient global brain ischemia induces dysfunctions of mitochondria including disturbance in mitochondrial protein synthesis and inhibition of respiratory chain complexes. Due to capacity of mitochondria to release apoptogenic proteins, ischemia-induced mitochondrial dysfunction is considered to be a key event coupling cerebral blood flow arrest to neuronal cell death. Ischemic preconditioning (IPC) represents an important phenomenon of adaptation of central nervous system (CNS) to sub-lethal short-term ischemia, which results in increased tolerance of CNS to the lethal ischemia. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated inhibition of mitochondrial protein synthesis and activity of mitochondrial respiratory chain complexes I and IV in the hippocampus of rats. Global brain ischemia was induced by 4-vessel occlusion in duration of 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our results showed that IPC affects ischemia-induced dysfunction of hippocampal mitochondria in two different ways. Repression of mitochondrial translation induced during reperfusion of the ischemic brain is significantly attenuated by IPC. Slight protective effect of IPC was documented for complex IV, but not for complex I. Despite this, protective effect of IPC on ischemia/reperfusion-associated changes in integrity of mitochondrial membrane and membrane proteins were observed. Since IPC exhibited also inhibitory effect on translocation of p53 to mitochondria, our results indicate that IPC affects downstream processes connecting mitochondrial dysfunction to neuronal cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

IPC:

Ischemic preconditioning

PAGE:

Polyacrylamide gel electrophoresis

SDS:

Sodium dodecyl sulphate

TBS-T:

Tris-buffered saline with addition of 0.05% of Tween 20

References

  1. Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. In: Molecular mechanisms of ischemic brain damage. Elsevier, Amsterdam-New York-Oxford, pp 29–37

  2. Kirino T (2000) Delayed neuronal death. Neuropathology 20:S95–S97

    Article  PubMed  Google Scholar 

  3. Sims NR, Anderson MF (2002) Mitochondrial contributions to tissue damage in stroke. Neurochem Int 40:511–526

    Article  PubMed  CAS  Google Scholar 

  4. Abe K, Aoki M, Kawagoe J, Yoshida T, Hattori A, Kogure K, Itoyama Y (1995) Ischemic delayed neuronal death: a mitochondrial hypothesis. Stroke 26:1478–1489

    PubMed  CAS  Google Scholar 

  5. Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19:351–369

    Article  PubMed  CAS  Google Scholar 

  6. Hayashi T, Abe K (2004) Ischemic neuronal cell death and organelle damage. Neurol Res 26:827–834

    Article  PubMed  CAS  Google Scholar 

  7. Clayton R, Clark JB, Sharpe M (2005) Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit: implications for apoptosis and neurodegenerative disease. J Neurochem 92:840–849

    Article  PubMed  CAS  Google Scholar 

  8. Perier C, Tieu K, Guegan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S, Vila M (2005) Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA 102:19126–19131

    Article  PubMed  CAS  Google Scholar 

  9. Cao G, Clark RS, Pei W, Yin W, Zhang F, Sun FY, Graham SH, Chen J (2003) Translocation of apoptosis-inducing factor in vulnerable neurons after transient cerebral ischemia and in neuronal cultures after oxygen-glucose deprivation. J Cereb Blood Flow Metab 23:1137–1150

    Article  PubMed  CAS  Google Scholar 

  10. Charriaut-Marlangue C, Aggoun-Zouaoui D, Represa A, Ben-Ari Y (1996) Apoptotic features of selective neuronal death in ischemia, epilepsy and gp 120 toxicity. Trends Neurosci 19:109–114

    Article  PubMed  CAS  Google Scholar 

  11. Endo H, Kamada H, Nito C, Nishi T, Chan PH (2006) Mitochondrial translocation of p53 mediates release of cytochrome c and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 26:7974–7983

    Article  PubMed  CAS  Google Scholar 

  12. Hetz C, Vitte PA, Bombrun A, Rostovtseva TK, Montessuit S, Hiver A, Schwarz MK, Church DJ, Korsmeyer SJ, Martinou JC, Antonsson B (2005) Bax channel inhibitors prevent mitochondrion-mediated apoptosis and protect neurons in a model of global brain ischemia. J Biol Chem 280:42960–42970

    Article  PubMed  CAS  Google Scholar 

  13. Hokainiemi J, Massa SM, Breckinridge M, Sharp FR (1996) Global ischemia induces apoptosis-associated genes in hippocampus. Mol Brain Res 42:79–88

    Article  Google Scholar 

  14. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Y, Deveraux OL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 96:5752–5757

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Pinzon MA, Xu GP, Born J, Lorenyo J, Busto R, Rosenthal M, Sick TJ (1999) Cytochrome C is released from mitochondria into the cytosol after cerebral anoxia or ischemia. J Cereb Blood Flow Metab 19:39–43

    Article  PubMed  CAS  Google Scholar 

  16. Sugawara T, Fujimura M, Morita-Fujimura Y, Kawase M, Chan PH (1999) Mitochondrial release of cytochrome c corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. J Neurosci 19:1–6

    Google Scholar 

  17. Taanman J-W (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410:103–123

    Article  PubMed  CAS  Google Scholar 

  18. Wallace DC (1999) Mitochondrial disease in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  19. Chomyn A, Enriquez JA, Micol V, Fernandez-Silva P, Attardi G (2000) The mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episode syndrome-associated human mitochondrial tRNALeu (UUR) mutation causes aminoacylation deficiency and concomitant reduced association of mRNA with ribosomes. J Biol Chem 275:19198–19209

    Article  PubMed  CAS  Google Scholar 

  20. Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352

    Article  PubMed  CAS  Google Scholar 

  21. Tryoen-Toth P, Richert S, Sohm B, Mine M, Marsac C, Van Dorsselaer A, Leize E, Florentz C (2003) Proteomic consequences of a human mitochondrial tRNA mutation beyond the frame of mitochondrial translation. J Biol Chem 278:24314–24323

    Article  PubMed  CAS  Google Scholar 

  22. Ramachandran A, Moellering DR, Ceaser E, Shiva S, Xu J, Darley-Usmar V, (2002) Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc Natl Acad Sci USA 99:6643–6648

    Article  PubMed  CAS  Google Scholar 

  23. Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150

    Article  PubMed  Google Scholar 

  24. Kirino T, Tsujita Y, Tamura A (1991) Induced tolerance to ischemia in gerbil hippocampal neurons. J Cereb Blood Flow Metab 11:299–307

    PubMed  CAS  Google Scholar 

  25. Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Ohtsuki T, Hata R, Ueda H, Handa N, Kimura K, Kamada T (1991) “Ischemic tolerance” phenomenon detected in various brain regions. Brain Res 561:203–211

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Kato H, Nakata N, Kogure K (1992) Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res 586:121–124

    Article  PubMed  CAS  Google Scholar 

  27. Nishi S, Taki W, Uemura Y, Higashi T, Kikuchi H, Kudoh H, Satoh M, Nagata K (1993) Ischemic tolerance due to the induction of HSP70 in a rat ischemic recirculation model. Brain Res 615:281–288

    Article  PubMed  CAS  Google Scholar 

  28. Simon RP, Niiro M, Gwinn R (1993) Prior ischemic stress protects against experimental stroke. Neurosci Lett 163:135–137

    Article  PubMed  CAS  Google Scholar 

  29. Perez-Pinzon MA, Born JG (1999) Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ATP channel and protein kinase C. Neuroscience 89:453–459

    Article  PubMed  CAS  Google Scholar 

  30. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 26:248–254

    Article  PubMed  CAS  Google Scholar 

  31. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  PubMed  CAS  Google Scholar 

  32. Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    Article  PubMed  Google Scholar 

  33. Perez-Pinzon MA, Basit A, Dave KR, Busto R, Veauvy C, Saul I, Ginsberg MD, Sick TJ (2002) Effect of the first window of ischemic preconditioning on mitochondrial dysfunction following global cerebral ischemia. Mitochondrion 2:181–189

    Article  PubMed  CAS  Google Scholar 

  34. Dave KR, Saul I, Busto R, Ginsberg MD, Sick TJ, Perez-Pinzon MA (2001) Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J Cereb Blood Flow Metab 21:1401–1410

    Article  PubMed  CAS  Google Scholar 

  35. Perez-Pinzon MA (2004) Neuroprotective effects of ischemic preconditioning in brain mitochondria following cerebral ischemia. J Bioenerg Biomembr 36:323–327

    Article  PubMed  CAS  Google Scholar 

  36. Burda J, Hrehorovska M, Bonilla LG, Danielisova V, Cizkova D, Burda R, Nemethova M, Fando JL, Salinas M (2003) Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem Res 28:1213–1219

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka H, Yokota H, Jover T, Cappuccio I, Calderone A, Simionescu M, Bennett MV, Zukin RS (2004) Ischemic preconditioning: neuronal survival in the face of caspase-3 activation. J Neurosci 24:2750–2759

    Article  PubMed  CAS  Google Scholar 

  38. Lee CP, Sciamanna M, Peterson PL (1993) Intact rat brain mitochondria from a single animal: preparation and properties. Methods Toxicol 2:41–49

    Google Scholar 

  39. Keeney PM, Xie J, Capaldi RA, Bennett JP (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  PubMed  CAS  Google Scholar 

  40. Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25

    PubMed  CAS  Google Scholar 

  41. DeGracia DJ, Kumar R, Owen CR, Krause GS, White BC (2002) Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 22:127–141

    Article  PubMed  CAS  Google Scholar 

  42. Hossmann K-A (1993) Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96:161–177

    Article  PubMed  CAS  Google Scholar 

  43. Smialek M, Hamberger A (1970) The effect of moderate hypoxia and ischemia on cytochrome oxidase activity and protein synthesis in brain mitochondria. Brain Res 17:369–371

    Article  PubMed  CAS  Google Scholar 

  44. Liu Y, Kato H, Nakata N, Kogure K (1993) Temporal profile of heat shock protein 70 synthesis in ischemic tolerance induced by preconditioning ischemia in rat hippocampus. Neuroscience 56:921–927

    Article  PubMed  CAS  Google Scholar 

  45. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  PubMed  CAS  Google Scholar 

  46. Tsuchiya D, Hong S, Matsumori Y, Shiina H, Kayama T, Swanson RA, Dillman WH, Liu J, Panter SS, Weinstein PR (2003) Overexpression of rat heat shock protein 70 is associated with reduction of early mitochondrial cytochrome c release and subsequent DNA fragmentation after permanent focal ischemia. J Cereb Blood Flow Metab 23:718–727

    Article  PubMed  CAS  Google Scholar 

  47. Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24:6728–6741

    Article  PubMed  CAS  Google Scholar 

  48. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  PubMed  CAS  Google Scholar 

  49. Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH, Mattson MP, (2001) A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77:220–228

    Article  PubMed  CAS  Google Scholar 

  50. Leker RR, Aharonowiz M, Greig NH, Ovadia H (2004) The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol 187:478–486

    Article  PubMed  CAS  Google Scholar 

  51. Crumrine RC, Thomas AL, Morgan PF (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14:887–891

    PubMed  CAS  Google Scholar 

  52. Maeda K, Hata R, Gillardon F, Hossmann K-A (2001) Aggravation of brain injury after transient focal ischemia in p53-deficient mice. Brain Res Mol Brain Res 88:54–61

    Article  PubMed  CAS  Google Scholar 

  53. Yonekura I, Takai K, Asai A, Kawahara N, Kirino T (2006) p53 potentiates hippocampal neuronal death caused by global ischemia. J Cereb Blood Flow Metab 26:1332–1340

    Article  PubMed  CAS  Google Scholar 

  54. Tomasevic G, Shamloo M, Israeli D, Wieloch T (1999) Activation of p53 and its target genes p21 (WAF1/Cip1) and PAG608/Wig-1 in ischemic preconditioning. Brain Res Mol Brain Res 70:304–313

    Article  PubMed  CAS  Google Scholar 

  55. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education of Slovak Republic (grant VEGA 1/1192/04 to P.R.). We would like to thank Zdenka Cetlova and Jolana Bencatova for excellent technical assistance

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Racay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racay, P., Tatarkova, Z., Drgova, A. et al. Effect of Ischemic Preconditioning on Mitochondrial Dysfunction and Mitochondrial P53 Translocation after Transient Global Cerebral Ischemia in Rats. Neurochem Res 32, 1823–1832 (2007). https://doi.org/10.1007/s11064-007-9437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9437-3

Keywords

Navigation