Skip to main content
Log in

Long Noncoding RNA-CERNA1 Stabilized Atherosclerotic Plaques in apolipoprotein E−/− Mice

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Atherosclerosis is predicted to be the primary cause of death in the world by 2020. Changes in atherosclerotic plaque composition will lead to acute coronary syndromes. Although the studies on the molecular mechanisms of long noncoding RNA (lncRNA) are in-depth in molecular and cell levels, the in vivo research which studied the knowledge about lncRNAs in the regulation of plaque composition is still sparse. In this study, in order to investigate how a new lncRNA, CERNA1, regulates the composition of atherosclerotic plaques, we overexpressed CERNA1 in apolipoprotein E−/− (Apo E−/−) mice and analyzed the role of CERNA1 in atherosclerotic plaque stabilization. The results showed that CERNA1 inhibited the apoptosis of VSMCs and anti-inflammatory macrophages through increasing API5 level and further stabilized the atherosclerotic plaques. This discovery provided a novel therapeutic target for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Apo E −/− :

apolipoprotein E −/−

API5:

Apoptosis inhibitor 5

HUVECs:

Human umbilical vein endothelial cells

lncRNA:

Long noncoding RNA

MMP2/9:

Matrix metalloproteinase 2/9

VECs:

Vascular endothelial cells

VSMCs:

Vascular smooth muscle cells

oxLDL:

Oxidized low-density lipoprotein

TUNEL:

Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling

References

  1. Benjamin, E. J., Blaha, M. J., Chiuve, S. E., Cushman, M., Das, S. R., Deo, R., et al. (2017). Heart Disease and Stroke Statistics-2017 update: a report from the American Heart Association. Circulation, 135(10), e146–e603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nabel, E. G., & Braunwald, E. (2012). A tale of coronary artery disease and myocardial infarction. The New England Journal of Medicine, 366(1), 54–63. https://doi.org/10.1056/NEJMra1112570.

    Article  CAS  PubMed  Google Scholar 

  3. Haft, J. I. (2003). Multiple atherosclerotic plaque rupture in acute coronary syndrome. Circulation, 107(9), e65–e66 author reply e65–66.

    Article  PubMed  Google Scholar 

  4. Khan, R., Spagnoli, V., Tardif, J. C., & L’Allier, P. L. (2015). Novel anti-inflammatory therapies for the treatment of atherosclerosis. Atherosclerosis, 240(2), 497–509. https://doi.org/10.1016/j.atherosclerosis.2015.04.783.

    Article  CAS  PubMed  Google Scholar 

  5. Ruddy, J. M., Ikonomidis, J. S., & Jones, J. A. (2016). Multidimensional contribution of matrix metalloproteinases to atherosclerotic plaque vulnerability: multiple mechanisms of inhibition to promote stability. Journal of Vascular Research, 53(1–2), 1–16. https://doi.org/10.1159/000446703.

    Article  CAS  PubMed  Google Scholar 

  6. Hopps, E., & Caimi, G. (2015). Matrix metalloproteases as a pharmacological target in cardiovascular diseases. European Review for Medical and Pharmacological Sciences, 19(14), 2583–2589.

    CAS  PubMed  Google Scholar 

  7. Mercer, T. R., & Mattick, J. S. (2013). Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology, 20(3), 300–307. https://doi.org/10.1038/nsmb.2480.

    Article  CAS  Google Scholar 

  8. Tsao, H. W., Tai, T. S., Tseng, W., Chang, H. H., Grenningloh, R., Miaw, S. C., et al. (2013). Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proceedings of the National Academy of Sciences of the United States of America, 110(39), 15776–15781. https://doi.org/10.1073/pnas.1304343110.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kurian, L., Aguirre, A., Sancho-Martinez, I., Benner, C., Hishida, T., Nguyen, T. B., et al. (2015). Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation, 131(14), 1278–1290. https://doi.org/10.1161/CIRCULATIONAHA.114.013303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Michalik, K. M., You, X., Manavski, Y., Doddaballapur, A., Zornig, M., Braun, T., et al. (2014). Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circulation Research, 114(9), 1389–1397. https://doi.org/10.1161/CIRCRESAHA.114.303265.

    Article  CAS  PubMed  Google Scholar 

  11. Congrains, A., Kamide, K., Oguro, R., Yasuda, O., Miyata, K., Yamamoto, E., et al. (2012). Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis, 220(2), 449–455. https://doi.org/10.1016/j.atherosclerosis.2011.11.017.

    Article  CAS  PubMed  Google Scholar 

  12. Bell, R. D., Long, X., Lin, M., Bergmann, J. H., Nanda, V., Cowan, S. L., et al. (2014). Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(6), 1249–1259. https://doi.org/10.1161/ATVBAHA.114.303240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren, C., Li, X., Wang, T., Wang, G., Zhao, C., Liang, T., et al. (2015). Functions and mechanisms of long noncoding RNAs in ovarian cancer. International Journal of Gynecological Cancer, 25(4), 566–569. https://doi.org/10.1097/IGC.0000000000000413.

    Article  PubMed  Google Scholar 

  14. Lu, W., Huang, S. Y., Su, L., Zhao, B. X., & Miao, J. Y. (2016). Long noncoding RNA LOC100129973 suppresses apoptosis by targeting miR-4707-5p and miR-4767 in vascular endothelial cells. Scientific Reports, 6, 21620. https://doi.org/10.1038/srep21620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gavrieli, Y., Sherman, Y., & Ben-Sasson, S. A. (1992). Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 119(3), 493–501.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, X., Dong, W., Gao, Y., Shin, D. S., Ye, Q., Su, L., et al. (2017). Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Scientific Reports, 7(1), 3919. https://doi.org/10.1038/s41598-017-04411-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khyzha, N., Alizada, A., Wilson, M. D., & Fish, J. E. (2017). Epigenetics of atherosclerosis: emerging mechanisms and methods. Trends in Molecular Medicine, 23(4), 332–347. https://doi.org/10.1016/j.molmed.2017.02.004.

    Article  CAS  PubMed  Google Scholar 

  18. Bennett, M. R., Sinha, S., & Owens, G. K. (2016). Vascular smooth muscle cells in atherosclerosis. Circulation Research, 118(4), 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poudel, B., Ki, H. H., Luyen, B. T., Lee, Y. M., Kim, Y. H., & Kim, D. K. (2016). Triticumoside induces apoptosis via caspase-dependent mitochondrial pathway and inhibits migration through downregulation of MMP2/9 in human lung cancer cells. Acta Biochimica et Biophysica Sinica (Shanghai), 48(2), 153–160. https://doi.org/10.1093/abbs/gmv124.

    Article  CAS  Google Scholar 

  20. Maiolino, G., Rossitto, G., Caielli, P., Bisogni, V., Rossi, G. P., & Calo, L. A. (2013). The role of oxidized low-density lipoproteins in atherosclerosis: the myths and the facts. Mediators of Inflammation, 2013, 714653. https://doi.org/10.1155/2013/714653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Daugherty, A., Tall, A. R., Daemen, M., Falk, E., Fisher, E. A., Garcia-Cardena, G., et al. (2017). Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 37(9), e131–e157. https://doi.org/10.1161/ATV.0000000000000062.

    Article  CAS  PubMed  Google Scholar 

  22. Onat, D., Brillon, D., Colombo, P. C., & Schmidt, A. M. (2011). Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Current Diabetes Reports, 11(3), 193–202. https://doi.org/10.1007/s11892-011-0182-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinet, W., Schrijvers, D. M., & De Meyer, G. R. (2012). Molecular and cellular mechanisms of macrophage survival in atherosclerosis. Basic Research in Cardiology, 107(6), 297. https://doi.org/10.1007/s00395-012-0297-x.

    Article  CAS  PubMed  Google Scholar 

  24. Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233–241. https://doi.org/10.1038/35025203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, S., Lu, W., Ge, D., Meng, N., Li, Y., Su, L., et al. (2015). A new microRNA signal pathway regulated by long noncoding RNA TGFB2-OT1 in autophagy and inflammation of vascular endothelial cells. Autophagy, 11(12), 2172–2183. https://doi.org/10.1080/15548627.2015.1106663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu, Y. W., Zhao, J. Y., Li, S. F., Huang, J. L., Qiu, Y. R., Ma, X., et al. (2015). RP5-833A20.1/miR-382-5p/NFIA-dependent signal transduction pathway contributes to the regulation of cholesterol homeostasis and inflammatory reaction. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(1), 87–101. https://doi.org/10.1161/ATVBAHA.114.304296.

    Article  CAS  PubMed  Google Scholar 

  27. Hu, Y. W., Yang, J. Y., Ma, X., Chen, Z. P., Hu, Y. R., Zhao, J. Y., et al. (2014). A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-dependent signal transduction pathway is essential for the regulation of cholesterol homeostasis. Journal of Lipid Research, 55(4), 681–697. https://doi.org/10.1194/jlr.M044669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Special thanks to Yifeng Li for his technical support.

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 91539105, 81321061, 31270877, and 31070735), Shandong Excellent Young Scientist Award Fund (No. BS2013SW001), the Science and Technology Development Project of Shandong Province (2014GSF118158), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120131130010), and the National 973 Research Project (No. 2011CB503906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junying Miao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

In this study, all animal experiments and all procedures were performed in accordance with the ARRIVE guidelines and approved by the ethics committee in Shandong University, China. And no human studies were carried out by the authors for this article.

Additional information

Associate Editor Joost Sluijter oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 6640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., He, X., Su, L. et al. Long Noncoding RNA-CERNA1 Stabilized Atherosclerotic Plaques in apolipoprotein E−/− Mice. J. of Cardiovasc. Trans. Res. 12, 425–434 (2019). https://doi.org/10.1007/s12265-019-09883-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09883-4

Keywords

Navigation