Advertisement

Journal of Cardiovascular Translational Research

, Volume 11, Issue 5, pp 412–419 | Cite as

Exosome-Derived Dystrophin from Allograft Myogenic Progenitors Improves Cardiac Function in Duchenne Muscular Dystrophic Mice

  • Xuan Su
  • Yue Jin
  • Yan Shen
  • Chengwei Ju
  • Jingwen Cai
  • Yutao Liu
  • Il-man Kim
  • Yu Wang
  • Hong Yu
  • Neal L. Weintraub
  • Meng JiangEmail author
  • Yaoliang TangEmail author
Original Article
  • 411 Downloads

Abstract

Progressive cardiomyocyte loss in Duchenne muscular dystrophy (DMD) leads to cardiac fibrosis, cardiomyopathy, and eventually heart failure. In the present study, we observed that myogenic progenitor cells (MPC) carry mRNA for the dystrophin gene. We tested whether cardiac function can be improved in DMD by allograft transplantation of MPC-derived exosomes (MPC-Exo) into the heart to restore dystrophin protein expression. Exo from C2C12 cells (an MPC cell line) or vehicle were delivered locally into the hearts of MDX mice. After 2 days of treatment, we observed that MPC-Exo restored dystrophin expression in the hearts of MDX mice, which correlated with improved myocardial function in dystrophin-deficient MDX mouse hearts. In conclusion, this study demonstrated that allogeneic WT-MPC-Exo transplantation transiently restored dystrophin gene expression and improved cardiac function in MDX mice, suggesting that allogenic exosomal delivery may serve as an alternative treatment for cardiomyopathy of DMD.

Keywords

Dystrophin Exosome Myogenic progenitor cells Cardiomyopathy 

Notes

Funding

I. Kim, N.L. Weintraub, and Y. Tang were partially supported by the American Heart Association: GRNT31430008, NIH-AR070029, NIH-HL086555, NIH-HL134354, and NIH -HL12425.

Compliance with Ethical Standards

This article does not contain any studies with human participants performed by any of the authors.

Animals were handled according to approved protocols and animal welfare regulations of the Institutional Animal Care and Use Committee of the Medical College of Georgia/Augusta University.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Fayssoil, A., Nardi, O., Orlikowski, D., & Annane, D. (2010). Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Failure Reviews., 15(1), 103–107.CrossRefGoogle Scholar
  2. 2.
    Gumerson, J. D., & Michele, D. E. (2011). The dystrophin-glycoprotein complex in the prevention of muscle damage. Journal of biomedicine & biotechnology., 2011, 210797.CrossRefGoogle Scholar
  3. 3.
    D’Amario, D., Amodeo, A., Adorisio, R., Tiziano, F. D., Leone, A. M., Perri, G., et al. (2017). A current approach to heart failure in Duchenne muscular dystrophy. Heart (British Cardiac Society)., 103(22), 1770–1779.Google Scholar
  4. 4.
    Kamdar, F., & Garry, D. J. (2016). Dystrophin-deficient cardiomyopathy. Journal of the American College of Cardiology, 67(21), 2533–2546.CrossRefGoogle Scholar
  5. 5.
    Siemionow, M., Cwykiel, J., Heydemann, A., Garcia-Martinez, J., Siemionow, K., & Szilagyi, E. (2018). Creation of dystrophin expressing chimeric cells of myoblast origin as a novel stem cell based therapy for Duchenne muscular dystrophy. Stem cell reviews., 14(2), 189–199.CrossRefGoogle Scholar
  6. 6.
    Lee Y, El Andaloussi S, Wood MJ. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human molecular genetics. 2012;21(R1):R125–R134.CrossRefGoogle Scholar
  7. 7.
    Aminzadeh, M. A., Rogers, R. G., Fournier, M., Tobin, R. E., Guan, X., Childers, M. K., et al. (2018). Exosome-mediated benefits of cell therapy in mouse and human models of Duchenne muscular dystrophy. Stem cell reports., 10(3), 942–955.CrossRefGoogle Scholar
  8. 8.
    Tang, Y. T., Huang, Y. Y., Zheng, L., Qin, S. H., Xu, X. P., An, T. X., et al. (2017). Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International Journal of Molecular Medicine, 40(3), 834–844.CrossRefGoogle Scholar
  9. 9.
    Hu, G., Yao, H., Chaudhuri, A. D., Duan, M., Yelamanchili, S. V., Wen, H., et al. (2012). Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death & Disease, 3, e381.CrossRefGoogle Scholar
  10. 10.
    Ruan, X. F., Li, Y. J., Ju, C. W., Shen, Y., Lei, W., Chen, C., et al. (2018). Exosomes from Suxiao Jiuxin pill-treated cardiac mesenchymal stem cells decrease H3K27 demethylase UTX expression in mouse cardiomyocytes in vitro. Acta Pharmacologica Sinica, 39(4), 579–586.CrossRefGoogle Scholar
  11. 11.
    Ruan, X. F., Ju, C. W., Shen, Y., Liu, Y. T., Kim, I. M., Yu, H., et al. (2018). Suxiao Jiuxin pill promotes exosome secretion from mouse cardiac mesenchymal stem cells in vitro. Acta Pharmacologica Sinica, 39(4), 569–578.CrossRefGoogle Scholar
  12. 12.
    Chen, Z., Li, Y., Yu, H., Shen, Y., Ju, C., Ma, G., et al. (2017). Isolation of extracellular vesicles from stem cells. Methods in molecular biology (Clifton, NJ)., 1660, 389–394.CrossRefGoogle Scholar
  13. 13.
    Wang, Y., Zhang, L., Li, Y., Chen, L., Wang, X., Guo, W., et al. (2015). Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. International journal of cardiology., 192, 61–69.CrossRefGoogle Scholar
  14. 14.
    Helwa, I., Cai, J., Drewry, M. D., Zimmerman, A., Dinkins, M. B., Khaled, M. L., et al. (2017). A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 12(1), e0170628.CrossRefGoogle Scholar
  15. 15.
    Bayoumi AS, Park KM, Wang Y, Teoh JP, Aonuma T, Tang Y, et al. A carvedilol-responsive microRNA, miR-125b-5p protects the heart from acute myocardial infarction by repressing pro-apoptotic bak1 and klf13 in cardiomyocytes. Journal of molecular and cellular cardiology. 2018;114:72–82.CrossRefGoogle Scholar
  16. 16.
    Liu, N., Williams, A. H., Maxeiner, J. M., Bezprozvannaya, S., Shelton, J. M., Richardson, J. A., et al. (2012). microRNA-206 promotes skeletal muscle regeneration and delays progression of Duchenne muscular dystrophy in mice. The Journal of Clinical Investigation, 122(6), 2054–2065.CrossRefGoogle Scholar
  17. 17.
    Terrill, J. R., Pinniger, G. J., Graves, J. A., Grounds, M. D., & Arthur, P. G. (2016). Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy. The Journal of physiology., 594(11), 3095–3110.CrossRefGoogle Scholar
  18. 18.
    Messina, S., Bitto, A., Aguennouz, M., Mazzeo, A., Migliorato, A., Polito, F., et al. (2009). Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone. Experimental neurology., 220(2), 349–358.CrossRefGoogle Scholar
  19. 19.
    McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet (London, England). 2017;390(10101):1489–1498.Google Scholar
  20. 20.
    Sakamoto, M., Yuasa, K., Yoshimura, M., Yokota, T., Ikemoto, T., Suzuki, M., et al. (2002). Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochemical and Biophysical Research Communications, 293(4), 1265–1272.CrossRefGoogle Scholar
  21. 21.
    Mendell, J. R., Sahenk, Z., Malik, V., Gomez, A. M., Flanigan, K. M., Lowes, L. P., et al. (2015). A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Molecular therapy: the journal of the American Society of Gene Therapy., 23(1), 192–201.CrossRefGoogle Scholar
  22. 22.
    Syed, Y. Y. (2016). Eteplirsen: first global approval. Drugs, 76(17), 1699–1704.CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Long, C., Li, H., McAnally, J. R., Baskin, K. K., Shelton, J. M., et al. (2017). CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Science advances., 3(4), e1602814.CrossRefGoogle Scholar
  24. 24.
    Young, C. S., Hicks, M. R., Ermolova, N. V., Nakano, H., Jan, M., Younesi, S., et al. (2016). A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell, 18(4), 533–540.CrossRefGoogle Scholar
  25. 25.
    Gauvreau, M. E., Cote, M. H., Bourgeois-Daigneault, M. C., Rivard, L. D., Xiu, F., Brunet, A., et al. (2009). Sorting of MHC class II molecules into exosomes through a ubiquitin-independent pathway. Traffic (Copenhagen, Denmark)., 10(10), 1518–1527.CrossRefGoogle Scholar
  26. 26.
    Hagan, M., Ashraf, M., Kim, I. M., Weintraub, N. L., & Tang, Y. (2018). Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Medical hypotheses., 110, 97–100.CrossRefGoogle Scholar
  27. 27.
    Kanelidis, A. J., Premer, C., Lopez, J., Balkan, W., & Hare, J. M. (2017). Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction: a meta-analysis of preclinical studies and clinical trials. Circulation research., 120(7), 1139–1150.CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Hoffman, J. A., & Ruoslahti, E. (2005). Molecular profiling of heart endothelial cells. Circulation, 112(11), 1601–1611.CrossRefGoogle Scholar
  29. 29.
    Kim, H., Yun, N., Mun, D., Kang, J. Y., Lee, S. H., Park, H., et al. (2018). Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochemical and biophysical research communications., 499(4), 803–808.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
  2. 2.Vascular Biology Center, Medical College of GeorgiaAugusta UniversityAugustaUSA
  3. 3.Department of Cardiology, Zhongda HospitalMedical School of Southeast UniversityNanjingChina
  4. 4.Department of Cardiology, Second Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations