Skip to main content

Advertisement

Log in

Caspase-1 Plays a Critical Role in Accelerating Chronic Kidney Disease-Promoted Neointimal Hyperplasia in the Carotid Artery

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

To determine whether caspase-1 is critical in chronic kidney disease (CKD)-mediated arterial neointimal hyperplasia (NH), we utilized caspase−/− mice and induced NH in carotid artery in a CKD environment, and uremic sera-stimulated human vascular smooth muscle cells (VSMC). We made the following findings: (1) Caspase-1 inhibition corrected uremic sera-mediated downregulation of VSMC contractile markers, (2) CKD-promoted NH was attenuated in caspase−/− mice, (3) CKD-mediated downregulation of contractile markers was rescued in caspase null mice, and (4) expression of VSMC migration molecule αvβ3 integrin was reduced in caspase−/− tissues. Our results suggested that caspase-1 pathway senses CKD metabolic danger signals. Further, CKD-mediated increase of contractile markers in VSMC and increased expression of VSMC migration molecule αvβ3 integrin in NH formation were caspase-1 dependent. Therefore, caspase-1 is a novel therapeutic target for the suppression of CKD-promoted NH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CKD:

Chronic kidney disease

CVD:

Cardiovascular diseases

AVF:

Arteriovenous fistulas

NH:

Neointimal hyperplasia

VSMC:

Vascular smooth muscle cells

TLR:

Toll-like receptors

PAMP:

Pathogen-associated molecular patterns

DAMP:

Danger signal associated molecular patterns

NOD:

Nucleotide binding and oligomerization domain

NLR:

NOD-like receptors

HD:

Hemodialysis

HAVSMC:

Human aortic vascular smooth muscle cells

BUN:

Blood urea nitrogen

WT:

Wild type

VVG:

Verhoeff elastic-van Gieson stain

H & E:

Hematoxylin and eosin stain

ASC:

Apoptosis-associated speck-like protein containing caspase recruitment domain

References

  1. Levey, A. S., Coresh, J., Balk, E., Kausz, A. T., Levin, A., Steffes, M. W., et al. (2003). National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Annals of Internal Medicine, 139(2), 137–147. Guideline Practice Guideline Research Support, Non-U.S. Gov’t.

    Article  PubMed  Google Scholar 

  2. Basnakian, A. G., Shah, S. V., Ok, E., Altunel, E., & Apostolov, E. O. (2010). Carbamylated LDL. Advances in Clinical Chemistry, 51, 25–52.

    Article  CAS  PubMed  Google Scholar 

  3. Foundation, N. K. (2002). K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. American Journal of Kidney Diseases, 39(2 Suppl 1), S1–266. Guideline Practice Guideline.

    Google Scholar 

  4. Moradi, H., Sica, D. A., & Kalantar-Zadeh, K. (2013). Cardiovascular burden associated with uremic toxins in patients with chronic kidney disease. American Journal of Nephrology, 38(2), 136–148. doi:10.1159/000351758. Research Support, N.I.H., Extramural Review.

    Article  CAS  PubMed  Google Scholar 

  5. Feldman, H. I., Kobrin, S., & Wasserstein, A. (1996). Hemodialysis vascular access morbidity. Journal of the American Society of Nephrology, 7(4), 523–535. Editorial Research Support, U.S. Gov’t, Non-P.H.S. Review.

    CAS  PubMed  Google Scholar 

  6. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E., & Hsu, C. Y. (2004). Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. New England Journal of Medicine, 351(13), 1296–1305. doi:10.1056/NEJMoa041031.

    Article  CAS  PubMed  Google Scholar 

  7. Daniels, S. E., Beineke, P., Rhees, B., McPherson, J. A., Kraus, W. E., Thomas, G. S., et al. (2014). Biological and analytical stability of a peripheral blood gene expression score for obstructive coronary artery disease in the PREDICT and COMPASS studies. Journal of Cardiovascular Translational Research, 7(7), 615–622. doi:10.1007/s12265-014-9583-3. Research Support, Non-U.S. Gov’t Validation Studies.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fernandez-Friera, L., Ibanez, B., & Fuster, V. (2014). Imaging subclinical atherosclerosis: is it ready for prime time? A review. Journal of Cardiovascular Translational Research, 7(7), 623–634. doi:10.1007/s12265-014-9582-4.

    Article  PubMed  Google Scholar 

  9. Wasse, H., Huang, R., Naqvi, N., Smith, E., Wang, D., & Husain, A. (2012). Inflammation, oxidation and venous neointimal hyperplasia precede vascular injury from AVF creation in CKD patients. The Journal of Vascular Access, 13(2), 168–174. doi:10.5301/jva.5000024.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Langer, S., Kokozidou, M., Heiss, C., Kranz, J., Kessler, T., Paulus, N., et al. (2010). Chronic kidney disease aggravates arteriovenous fistula damage in rats. Kidney International, 78(12), 1312–1321. doi:10.1038/ki.2010.353. Research Support, Non-U.S. Gov’t.

    Article  PubMed  Google Scholar 

  11. Kokubo, T., Ishikawa, N., Uchida, H., Chasnoff, S. E., Xie, X., Mathew, S., et al. (2009). CKD accelerates development of neointimal hyperplasia in arteriovenous fistulas. Journal of the American Society of Nephrology, 20(6), 1236–1245. doi:10.1681/ASN.2007121312. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, D. N., Schmee, J., Lee, K. T., & Thomas, W. A. (1987). Atherosclerotic lesions in the coronary arteries of hyperlipidemic swine. part 1. Cell increases, divisions, losses and cells of origin in first 90 days on diet. Atherosclerosis, 64(2–3), 231–242.

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz, S. M., deBlois, D., & O’Brien, E. R. (1995). The intima. Soil for atherosclerosis and restenosis. Circulation Research, 77(3), 445–465.

    Article  CAS  PubMed  Google Scholar 

  14. Stary, H. C., Blankenhorn, D. H., Chandler, A. B., Glagov, S., Insull, W., Jr., Richardson, M., et al. (1992). A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis. American Heart Association. Arteriosclerical Thrombone, 12(1), 120–134.

    CAS  Google Scholar 

  15. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A., & Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(5), 1262–1275.

    Article  CAS  PubMed  Google Scholar 

  16. Alexander, M. R., & Owens, G. K. (2012). Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annual Review of Physiology, 74, 13–40. doi:10.1146/annurev-physiol-012110-142315.

    Article  CAS  PubMed  Google Scholar 

  17. Monroy, M. A., Fang, J, Li, S, Ferrer, L, Birkenbach, M. P., Lee et al. (2014). Chronic kidney disease alters vascular smooth muscle cell phenotype. Frontiers in Bioscience (Landmark Edition) in press.

  18. Regan, C. P., Adam, P. J., Madsen, C. S., & Owens, G. K. (2000). Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury. Journal of Clinical Investigation, 106(9), 1139–1147. doi:10.1172/JCI10522. Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84(3), 767–801. doi:10.1152/physrev.00041.2003. Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review.

    Article  CAS  PubMed  Google Scholar 

  20. Yin, Y., Yan, Y., Jiang, X., Mai, J., Chen, N. C., Wang, H., et al. (2009). Inflammasomes are differentially expressed in cardiovascular and other tissues. International Journal of Immunopathology and Pharmacology, 22(2), 311–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yin, Y., Pastrana, J. L., Li, X., Huang, X., Mallilankaraman, K., Choi, E. T., et al. (2013). Inflammasomes: sensors of metabolic stresses for vascular inflammation. Frontiers in Bioscience, 18, 638–649. Research Support, N.I.H., Extramural.

    Article  CAS  Google Scholar 

  22. Yin, Y., Li, X., Sha, X., Xi, H., Li, Y. F., Shao, Y., et al. (2015). Early hyperlipidemia promotes endothelial activation via a caspase-1-sirtuin 1 pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(4), 804–816. doi:10.1161/ATVBAHA.115.305282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shen, J., Yin, Y., Mai, J., Xiong, X., Pansuria, M., Liu, J., et al. (2010). Caspase-1 recognizes extended cleavage sites in its natural substrates. Atherosclerosis, 210(2), 422–429. doi:10.1016/j.atherosclerosis.2009.12.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lopez-Pastrana, J., Ferrer, L. M., Li, Y. F., Xiong, X., Xi, H., Cueto, R., et al. (2015). Inhibition of caspase-1 activation in endothelial cells improves angiogenesis: a novel therapeutic potential for ischemia. Journal of Biological Chemistry, 290(28), 17485–17494. doi:10.1074/jbc.M115.641191.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y. F., Huang, X., Li, X., Gong, R., Yin, Y., Nelson, J., et al. (2016). Caspase-1 mediates hyperlipidemia-weakened progenitor cell vessel repair. Front Bioscience (Landmark Ed), 21, 178–191.

    Article  Google Scholar 

  26. Monroy, M. A., Fang, J., Li, S., Ferrer, L., Birkenbach, M. P., Lee, I. J., et al. (2015). Chronic kidney disease alters vascular smooth muscle cell phenotype. Front Bioscience (Landmark Ed), 20, 784–795.

    Article  Google Scholar 

  27. Anders, H. J., & Muruve, D. A. (2011). The inflammasomes in kidney disease. Journal of the American Society of Nephrology, 22(6), 1007–1018. doi:10.1681/ASN.2010080798. Research Support, Non-U.S. Gov’t Review.

    Article  CAS  PubMed  Google Scholar 

  28. Kumar, A., Hoover, J. L., Simmons, C. A., Lindner, V., & Shebuski, R. J. (1997). Remodeling and neointimal formation in the carotid artery of normal and P-selectin-deficient mice. Circulation, 96(12), 4333–4342.

    Article  CAS  PubMed  Google Scholar 

  29. Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., et al. (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science, 267(5206), 2000–2003. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  Google Scholar 

  30. Lee, I. J., Hilliard, B., Swami, A., Madara, J. C., Rao, S., Patel, T., et al. (2012). Growth arrest-specific gene 6 (Gas6) levels are elevated in patients with chronic renal failure. Nephrology, Dialysis, Transplantation, 27(11), 4166–4172. doi:10.1093/ndt/gfs337. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eddy, A. A., Lopez-Guisa, J. M., Okamura, D. M., & Yamaguchi, I. (2012). Investigating mechanisms of chronic kidney disease in mouse models. Pediatric Nephrology, 27(8), 1233–1247. doi:10.1007/s00467-011-1938-2. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lichtnekert, J., Kulkarni, O. P., Mulay, S. R., Rupanagudi, K. V., Ryu, M., & Allam, R. (2011). Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS ONE, 6(10), e26778. doi:10.1371/journal.pone.0026778. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kokubo, T., Uchida, H., & Choi, E. T. (2007). Integrin alpha(v)beta(3) as a target in the prevention of neointimal hyperplasia. Journal of Vascular Surgery, 45(Suppl A), A33–38. doi:10.1016/j.jvs.2007.02.069. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review.

    Article  PubMed  Google Scholar 

  34. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer, 10(1), 9–22. doi:10.1038/nrc2748. Research Support, N.I.H., Extramural Review.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, T., & Roy-Chaudhury, P. (2009). Advances and new frontiers in the pathophysiology of venous neointimal hyperplasia and dialysis access stenosis. Advances in Chronic Kidney Disease, 16(5), 329–338. doi:10.1053/j.ackd.2009.06.009. Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee, H., Manns, B., Taub, K., Ghali, W. A., Dean, S., Johnson, D., et al. (2002). Cost analysis of ongoing care of patients with end-stage renal disease: the impact of dialysis modality and dialysis access. American Journal of Kidney Diseases, 40(3), 611–622. doi:10.1053/ajkd.2002.34924. Comparative Study Research Support, Non-U.S. Gov’t.

    Article  PubMed  Google Scholar 

  37. Yajima, N., Takahashi, M., Morimoto, H., Shiba, Y., Takahashi, Y., Masumoto, J., et al. (2008). Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation, 117(24), 3079–3087.

    Article  CAS  PubMed  Google Scholar 

  38. Villegas, L. R., Kluck, D., Field, C., Oberley-Deegan, R. E., Woods, C., Yeager, M. E., et al. (2013). Superoxide dismutase mimetic, MnTE-2-PyP, attenuates chronic hypoxia-induced pulmonary hypertension, pulmonary vascular remodeling, and activation of the NALP3 inflammasome. Antioxidants and Redox Signaling, 18(14), 1753–1764. doi:10.1089/ars.2012.4799. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Duewell, P., Kono, H., Rayner, K. J., Sirois, C. M., Vladimer, G., Bauernfeind, F. G., et al. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 464(7293), 1357–1361. doi:10.1038/nature08938. Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Usui, F., Shirasuna, K., Kimura, H., Tatsumi, K., Kawashima, A., Karasawa, T., et al. (2012). Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochemical and Biophysical Research Communications, 425(2), 162–168. doi:10.1016/j.bbrc.2012.07.058. Research Support, Non-U.S. Gov’t.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. R. Flavell from Yale University for generously providing caspase-1−/− mice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-feng Yang or Eric T. Choi.

Ethics declarations

Funding

This work was supported by Temple University’s fund to ETC., the American Heart Association Postdoctoral Fellowship to YFL, and the National Institutes of Health Grants to ETC., XFY, and HW.

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Statement

This study was conducted in accordance to the Helsinki declaration and with the ethical standards of the responsible committee on human experimentation (institutional and national). All participants provided written informed consent. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the Institutional Animal Care and Use Committee of Temple University School of Medicine.

Additional information

Associate Editor Jennifer L. Hall oversaw the review of this article

Alexandra M. Monroy, Jahaira Lopez-Pastrana and Gayani Nanayakkara contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer, L.M., Monroy, A.M., Lopez-Pastrana, J. et al. Caspase-1 Plays a Critical Role in Accelerating Chronic Kidney Disease-Promoted Neointimal Hyperplasia in the Carotid Artery. J. of Cardiovasc. Trans. Res. 9, 135–144 (2016). https://doi.org/10.1007/s12265-016-9683-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-016-9683-3

Keywords

Navigation