Skip to main content

Advertisement

Log in

The Role of Intrinsic Apoptotic Signaling in Hemorrhagic Shock-Induced Microvascular Endothelial Cell Barrier Dysfunction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Hemorrhagic shock leads to endothelial cell barrier dysfunction resulting in microvascular hyperpermeability. Hemorrhagic shock-induced microvascular hyperpermeability is associated with worse clinical outcomes in patients with traumatic injuries. The results from our laboratory have illustrated a possible pathophysiological mechanism showing involvement of mitochondria-mediated “intrinsic” apoptotic signaling in regulating hemorrhagic shock-induced microvascular hyperpermeability. Hemorrhagic shock results in overexpression of Bcl-2 family of pro-apoptotic protein, BAK, in the microvascular endothelial cells. The increase in BAK initiates “intrinsic” apoptotic signaling cascade with the release of mitochondrial cytochrome c in the cytoplasm and activation of downstream effector caspase-3, leading to loss of endothelial cell barrier integrity. Thus, this review article offers a brief overview of important findings from our past and present research work along with new leads for future research. The summary of our research work will provide information leading to different avenues in developing novel strategies against microvascular hyperpermeability following hemorrhagic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Childs, E. W., Udobi, K. F., Hunter, F. A., & Dhevan, V. (2005). Evidence of transcellular albumin transport after hemorrhagic shock. Shock, 23, 565–570.

    CAS  PubMed  Google Scholar 

  2. Dewar, D., Moore, F. A., Moore, E. E., & Balogh, Z. (2009). Postinjury multiple organ failure. Injury, 40, 912–918.

    Article  PubMed  Google Scholar 

  3. World Health Organization International Injuries [Internet]. Available from: http://www.who.int/topics/injuries/about/en/index.html.

  4. North Dakota Health.gov Trauma Statistics [Internet]. Available from: http://www.ndhealth.gov/trauma/stats.

  5. National Trauma Institute.org Trauma Statistics [Internet]. Available from: http://www.nationaltraumainstitute.org/home/trauma_statistics.html.

  6. Yuan, S. Y., & Rigor, R. R. (2010). Regulation of endothelial barrier function. In: Colloquium series on integrated systems physiology: from molecule to function to disease. San Rafael: Morgan & Claypool Life Sciences.

    Google Scholar 

  7. Vandenbroucke, E., Mehta, D., Minshall, R., & Malik, A. B. (2008). Regulation of endothelial junctional permeability. Annals New York Academy Science, 1123, 134–145.

    Article  CAS  Google Scholar 

  8. Mehta, D., & Malik, A. B. (2006). Signaling mechanisms regulating endothelial permeability. Physiological Reviews, 86, 279–367.

    Article  CAS  PubMed  Google Scholar 

  9. Minshall, R. D., Sessa, W. C., Stan, R. V., Anderson, R. G., & Malik, A. B. (2003). Caveolin regulation of endothelial function. American Journal of Physiology. Lung Cellular and Molecular Physiology, 285, L1179–1183.

    CAS  PubMed  Google Scholar 

  10. Simionescu, N., Simonionescu, M., & Palade, G. E. (1978). Open junctions in the endothelium of the postcapillary venules of the diaphragm. Journal of Cell Biology, 79, 27–44.

    Article  CAS  PubMed  Google Scholar 

  11. Niessen, C. M. (2007). Tight junctions/adherens junctions: basic structure and function. Journal of Investigative Dermatology, 127, 2525–2532.

    Article  CAS  PubMed  Google Scholar 

  12. Gianfranco, B., & Dejana, E. (2008). Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiological Reviews, 84, 869–901.

    Google Scholar 

  13. Lampugnani, M. G., et al. (1995). The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). Journal of Cell Biology, 129, 203–217.

    Article  CAS  PubMed  Google Scholar 

  14. Hartsock, A., & Nelson, W. J. (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta, 1778, 660–669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kanlaya, R., Pattanakitsakul, S. N., Sinchaikul, S., Chen, S. T., & Thongboonkerd, V. (2009). Alterations in actin cytoskeletal assembly and junctional protein complexes in human endothelial cells induced by dengue virus infection and mimicry of leukocyte transendothelial migration. Journal of Proteome Research, 8, 2551–2262.

    Article  CAS  PubMed  Google Scholar 

  16. Fulda, S., & Debatin, K. M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 25, 4798–4811.

    Article  CAS  PubMed  Google Scholar 

  17. Hotchkiss, R. S., Strasser, A., McDunn, J. E., & Swanson, P. E. (2009). Cell death. New England Journal of Medicine, 361, 1570–1583.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Dejana, E., Spagnuolo, R., & Bazzoni, G. (2001). Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thrombosis and Haemostasis, 86, 308–315.

    CAS  PubMed  Google Scholar 

  19. Dejana, E., Orsenigo, F., & Lampugnani, M. G. (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science, 121, 2115–2122.

    Article  CAS  PubMed  Google Scholar 

  20. Childs, E. W., Tharakan, B., Hunter, F. A., Tinsley, J. H., & Cao, X. (2007). Apoptotic signaling induces hyperpermeability following hemorrhagic shock. American Journal of Physiology Heart and Circulatory Physiology, 292, H3179–H3189.

    Article  CAS  PubMed  Google Scholar 

  21. Moffitt, K. L., Martin, S. L., & Walker, B. (2010). From sentencing to execution—the processes of apoptosis. Journal of Pharmacy and Pharmacology, 62, 547–562.

    CAS  PubMed  Google Scholar 

  22. Galluzzi, L., Blomgren, K., & Kroemer, G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nature Review Neuroscience, 10, 481–494.

    Article  CAS  Google Scholar 

  23. Childs, E. W., Tharakan, B., Hunter, F. A., Isong, M., & Liggins, N. D. (2008). Mitochondrial complex III is involved in proapoptotic BAK-induced microvascular endothelial cell hyperpermeability. Shock, 29, 636–641.

    Article  CAS  PubMed  Google Scholar 

  24. Roumen, R. M., Hendriks, T., van der Ven-Jongekrijg, J., Nieuwenhuijzen, G. A., Sauerwein, R. W., van der Meer, J. W., & Gori, R. J. (1993). Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Annals of Surgery, 218, 769–776.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sawant, D. A., Tharakan, B., Wilson, R. L., Stagg, H. W., Hunter, F. A., & Childs, E. W. (2013). Regulation of tumor necrosis factor-α-induced microvascular endothelial cell hyperpermeability by recombinant B-cell lymphoma-extra large. Journal of Surgical Research, 184(1), 628–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Petrache, I., Verin, A. D., Crow, M. T., et al. (2001). Differential effect of MLC kinase in TNF-alpha-induced endothelial cell apoptosis and barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, L1168–1178.

    CAS  PubMed  Google Scholar 

  27. Petrache, I., Birukova, A., Ramirez, S. I., et al. (2003). The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. American Journal of Respiratory Cell and Molecular Biology, 28, 574–581.

    Article  CAS  PubMed  Google Scholar 

  28. Goldblum, S. E., Hennig, B., Jay, M., et al. (1989). Tumor necrosis factor alpha-induced pulmonary vascular endothelial injury. Infection and Immunity, 57, 1218–1226.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Campbell, M. T., Dagher, P., Hile, K. L., et al. (2008). Tumor necrosis factor-α induces intrinsic apoptotic signaling during renal obstruction through truncated Bid activation. Journal of Urology, 180, 2694–2700.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Sawant, D. A., Tharakan, B., Tobin, R. P., Stagg, H. W., Hunter, F. A., Newell, M. K., Smythe, W. R., & Childs, E. W. (2013). Inhibition of Fas-Fas ligand interaction attenuates microvascular hyperpermeability following hemorrhagic shock. Shock, 39, 161–167.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Reap, E. A., Roof, K., Maynor, K., Borrero, M., Booker, J., & Cohen, P. L. (1997). Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proceedings of the National Academy of Science, 94, 5750–5755.

    Article  CAS  Google Scholar 

  32. Sawant, D. A., Tharakan, B., Tobin, R. P., Reilly, J., Hunter, F. A., Newell, M. K., Smythe, W. R., & Childs, E. W. (2013). Microvascular endothelial cell hyperpermeability induced by endogenous caspase 3 activator staurosporine. Journal Trauma Acute Care Surgery, 74, 516–523.

    Article  CAS  Google Scholar 

  33. Childs, E. W., Tharakan, B., Byrge, N., Tinsley, J. H., Hunter, F. A., & Smythe, W. R. (2008). Angiopoietin-1 inhibits intrinsic apoptotic signaling and vascular hyperpermeability following hemorrhagic shock. American Journal of Physiology Heart and Circulatory Physiology, 294, H2285–H2295.

    Article  CAS  PubMed  Google Scholar 

  34. Gamble, J. R., Drew, J., Trezise, L., Underwood, A., Parsons, M., Kasminkas, L., Rudge, J., Yancopoulos, G., & Vadas, M. A. (2000). Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circulation Research, 87, 603–607.

    Article  CAS  PubMed  Google Scholar 

  35. Tharakan, B., Hunter, F. A., Smythe, W. R., & Childs, E. W. (2008). Alpha-lipoic acid attenuates hemorrhagic shock-induced apoptotic signaling and vascular hyperpermeability. Shock, 30, 571–577.

    Article  CAS  PubMed  Google Scholar 

  36. Eremeeva, M. E., & Silverman, D. J. (1998). Effects of the antioxidant alpha-lipoic acid on human umbilical vein endothelial cells infected with Rickettsia rickettsii. Infection and Immunity, 66, 2290–2299.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Ola, M. S., Nawaz, M., & Ahsan, H. (2011). Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Molecular and Cellular Biochemistry, 351, 41–58.

    Article  CAS  PubMed  Google Scholar 

  38. Distelhorst, C. W., & Bootman, M. D. (2011). Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca (2+) signaling and disease. Cell Calcium, 50(3), 234–241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Tornero, D., Posadas, I., & Ceña, V. (2011). Bcl-x (L) blocks a mitochondrial inner membrane channel and prevents Ca2+ overload-mediated cell death. PloS One, 6, e20423.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Childs, E. W., Tharakan, B., Nurudeen, S., Delmas, T. L., Hellman, J., Christie, T., Hunter, F. A., & Smythe, W. R. (2010). Cyclosporine a—protection against microvascular hyperpermeability is calcineurin independent. American Journal of Surgery, 199, 542–548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Crabtree, G. R. (2001). Calcium, calcineurin, and the control of transcription. Journal of Biological Chemistry, 276, 2313–2316.

    Article  CAS  PubMed  Google Scholar 

  42. Armstrong, J. S., Yang, H., Duan, W., & Whiteman, M. (2004). Cytochrome bc (1) regulates the mitochondrial permeability transition by two distinct pathways. Journal of Biological Chemistry, 279, 50420–50428.

    Article  CAS  PubMed  Google Scholar 

  43. Tharakan, B., Hunter, F. A., Smythe, W. R., & Childs, E. W. (2010). Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock. Clinical and Experimental Pharmacology and Physiology, 37, 939–944.

    Article  CAS  PubMed  Google Scholar 

  44. Teiten, M. H., Gaigneaux, A., Chateauvieux, S., Billing, A. M., Planchon, S., Fack, F., Renaut, J., Mack, F., Muller, C. P., Dicato, M., & Diederich, M. (2012). Identification of differentially expressed proteins in curcumin-treated prostate cancer cell lines. OMICS, 16, 289–300.

    Article  CAS  PubMed  Google Scholar 

  45. Childs, E. W., Tharakan, B., Hunter, F. A., & Smythe, W. R. (2010). 17beta-estradiol mediated protection against vascular leak after hemorrhagic shock: role of estrogen receptors and apoptotic signaling. Shock, 34, 229–235.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kawasaki, T., & Chaudry, I. H. (2012). The effects of estrogen on various organs: therapeutic approach for sepsis, trauma, and reperfusion injury. Part 1: central nervous system, lung, and heart. Journal of Anesthesia, 26, 883–891.

    Article  PubMed  Google Scholar 

  47. Harris, E. S., & Nelson, W. J. (2010). VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Current Opinion in Cell Biology, 22, 651–658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dejana, E., Taddei, A., & Randi, A. M. (2007). Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochimica et Biophysica Acta, 1775, 298–312.

    CAS  PubMed  Google Scholar 

  49. Furuyama, T., Kitayama, K., Shimoda, Y., Ogawa, M., Sone, K., Yoshida-Araki, K., Hisatsune, H., Nishikawa, S., Nakayama, K., Ikeda, K., Motoyama, N., & Mori, N. (2004). Abnormal angiogenesis in Foxo1 (Fkhr)-deficient mice. Journal of Biological Chemistry, 279, 34741–34749.

    Article  CAS  PubMed  Google Scholar 

  50. Taddei, A., Giampietro, C., Conti, A., Orsenigo, F., Breviario, F., Pirazzoli, V., Potente, M., Daly, C., Dimmeler, S., & Dejana, E. (2008). Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nature Cell Biology, 10, 923–934.

    Article  CAS  PubMed  Google Scholar 

  51. Steinhusen, U., Badock, V., Baurer, A., Behrens, J., Wittman-Liebold, B., Dörken, B., & Bommert, K. (2000). Apoptosis-induced cleavage of beta-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. Journal of Biological Chemistry, 275, 16345–16353.

    Article  CAS  PubMed  Google Scholar 

  52. Hinck, L., Näthke, I. S., Papkoff, J., & Nelson, W. J. (1994). Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. The Journal of Cell Biology, 125, 1327–1340.

    Article  CAS  PubMed  Google Scholar 

  53. Lilien, J., & Balsamo, J. (2005). The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Current Opinion in Cell Biology, 17, 459–465.

    Article  CAS  PubMed  Google Scholar 

  54. Miller, J. R., Hocking, A. M., Brown, J. D., & Moon, R. T. (1999). Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene, 18, 7860–7872.

    Article  CAS  PubMed  Google Scholar 

  55. Novak, A., & Dedhar, S. (1999). Signaling through beta-catenin and Lef/Tcf. Cellular and Molecular Life Sciences, 56, 523–537.

    Article  CAS  PubMed  Google Scholar 

  56. Dejana, E. (2010). The role of wnt signaling in physiological and pathological angiogenesis. Circulation Research, 107, 943–952.

    Article  CAS  PubMed  Google Scholar 

  57. Davidson, S. M., & Duchen, M. R. (2007). Endothelial mitochondria: contributing to vascular function and disease. Circulation Research, 100, 1128–1141.

    Article  CAS  PubMed  Google Scholar 

  58. Ignarro, L. J., Buga, G. M., Wood, K. S., Byrns, R. E., & Chaudhuri, G. (1987). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 84, 9265–9269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Clementi, E., Brown, G. C., Foxwell, N., & Moncada, S. (1999). On the mechanism by which vascular endothelial cells regulate their oxygen consumption. Proceedings of the National Academy of Sciences of the United States of America, 96, 1559–1562.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Moncada, S., & Erusalimsky, J. D. (2002). Does nitric oxide modulate mitochondrial energy generation and apoptosis. Nature Reviews Molecular Cell Biology, 3, 214–220.

    Article  CAS  PubMed  Google Scholar 

  61. Sánchez, F. A., Ehrenfeld, I. P., & Durán, W. N. (2013). S-nitrosation of proteins: an emergent regulatory mechanism in microvascular permeability and vascular function. Tissue Barriers, 1, e23896.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Soetkamp, D., Nguyen, T. T., Menazza, S., Hirschhäuser, C., Hendgen-Cotta, U. B., Rassaf, T., Schlüter, K. D., Boengler, K., Murphy, E., & Schulz, R. (2014). S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function. Basic Research in Cardiology, 109, 433.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Hu, Q., Yu, Z. X., Ferrans, V. J., Takeda, K., Irani, K., & Ziegelstein, R. C. (2002). Critical role of NADPH oxidase-derived reactive oxygen species in generating Ca2+ oscillations in human aortic endothelial cells stimulated by histamine. Journal of Biological Chemistry, 277, 32546–32551.

    Article  CAS  PubMed  Google Scholar 

  64. Hu, Q., & Ziegelstein, R. C. (2000). Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation, 102, 2541–2547.

    Article  CAS  PubMed  Google Scholar 

  65. Tan, G., Shi, Y., & Wu, Z. H. (2012). MicroRNA-22 promotes cell survival upon UV radiation by repressing PTEN. Biochemical and Biophysical Research Communications, 417, 546–551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wang, H., Zhu, H. Q., Wang, F., Zhou, Q., Gui, S. Y., & Wang, Y. (2013). MicroRNA-1 prevents high-fat diet-induced endothelial permeability in apoE knock-out mice. Molecular and Cellular Biochemistry, 378, 153–159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Urbich, C., Kuehbacher, A., & Dimmeler, S. (2008). Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovascular Research, 79, 581–588.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

These research studies were supported by a grant (1K01HL07815-01A1), from National Heart, Lung and Blood Institute, National Institutes of Health, USA. We acknowledge Mr. Glen Cryer for his help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed W. Childs.

Additional information

Associate Editor Daniel P. Judge oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, D.A., Tharakan, B., Hunter, F.A. et al. The Role of Intrinsic Apoptotic Signaling in Hemorrhagic Shock-Induced Microvascular Endothelial Cell Barrier Dysfunction. J. of Cardiovasc. Trans. Res. 7, 711–718 (2014). https://doi.org/10.1007/s12265-014-9589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-014-9589-x

Keywords

Navigation