Skip to main content
Log in

Transcriptional Network Analysis for the Regulation of Left Ventricular Hypertrophy and Microvascular Remodeling

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Hypertension and cardiomyopathies share maladaptive changes of cardiac morphology, eventually leading to heart failure. These include left ventricular hypertrophy (LVH), myocardial fibrosis, and structural remodeling of coronary microcirculation, which is the morphologic hallmark of coronary microvascular dysfunction. To pinpoint the complex molecular mechanisms and pathways underlying LVH-associated cardiac remodeling independent of blood pressure effects, we employed gene network approaches to the rat heart. We used the Spontaneously Hypertensive Rat model showing many features of human hypertensive cardiomyopathy, for which we collected histological and histomorphometric data of the heart and coronary vasculature, and genome-wide cardiac gene expression. Here, we provide a large catalogue of gene co-expression networks in the heart that are significantly associated with quantitative variation in LVH, microvascular remodeling, and fibrosis-related traits. Many of these networks were significantly conserved to human idiopathic and/or ischemic cardiomyopathy patients, suggesting a potential role for these co-expressed genes in human heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mancini, M., Petretto, E., Kleinert, C., et al. (2013). Mapping genetic determinants of coronary microvascular remodeling in the spontaneously hypertensive rat. Basic Research in Cardiology, 108, 316. doi:10.1007/s00395-012-0316-y.

    Article  PubMed  Google Scholar 

  2. Sharma, P., Middelberg, R. P. S., Andrew, T., et al. (2006). Heritability of left ventricular mass in a large cohort of twins. Journal of Hypertension, 24, 321–324. doi:10.1097/01.hjh.0000202815.18083.03.

    Article  PubMed  CAS  Google Scholar 

  3. Tousoulis, D., Androulakis, E., Papageorgiou, N., et al. (2013). Genetic predisposition to left ventricular hypertrophy and the potential involvement of cystatin-C in untreated hypertension. American Journal of Hypertension, 26, 683–690. doi:10.1093/ajh/hps089.

    Article  PubMed  CAS  Google Scholar 

  4. Rekhraj, S., Gandy, S. J., Szwejkowski, B. R., et al. (2013). High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. Journal of the American College of Cardiology, 61, 926–932. doi:10.1016/j.jacc.2012.09.066.

    Article  PubMed  CAS  Google Scholar 

  5. Lynch, A. I., Tang, W., Shi, G., et al. (2012). Epistatic effects of ACE I/D and AGT gene variants on left ventricular mass in hypertensive patients: the HyperGEN study. Journal of Human Hypertension, 26, 133–140. doi:10.1038/jhh.2010.131.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao, Y., Wang, C., Wu, J., et al. (2013). Choline protects against cardiac hypertrophy induced by increased after-load. International Journal of Biological Sciences, 9, 295–302. doi:10.7150/ijbs.5976.

    Article  PubMed  CAS  Google Scholar 

  7. Givvimani, S., Kundu, S., Narayanan, N., et al. (2013). TIMP-2 mutant decreases MMP-2 activity and augments pressure overload induced LV dysfunction and heart failure. Archives of Physiology and Biochemistry, 119, 65–74. doi:10.3109/13813455.2012.755548.

    Article  PubMed  CAS  Google Scholar 

  8. Hubner, N., Wallace, C. A., Zimdahl, H., et al. (2005). Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics, 37, 243–253. doi:10.1038/ng1522.

    Article  PubMed  CAS  Google Scholar 

  9. Petretto, E., Sarwar, R., Grieve, I., et al. (2008). Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass. Nature Genetics, 40, 546–552.

    Article  PubMed  CAS  Google Scholar 

  10. McDermott-Roe, C., Ye, J., Ahmed, R., et al. (2011). Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature, 478, 114–118. doi:10.1038/nature10490.

    Article  PubMed  CAS  Google Scholar 

  11. Pravenec, M., Klír, P., Kren, V., et al. (1989). An analysis of spontaneous hypertension in spontaneously hypertensive rats by means of new recombinant inbred strains. Journal of Hypertension, 7, 217–221.

    Article  PubMed  CAS  Google Scholar 

  12. Herrmann, J., Kaski, J. C., & Lerman, A. (2012). Coronary microvascular dysfunction in the clinical setting: from mystery to reality. European Heart Journal, 33, 2771–2782b. doi:10.1093/eurheartj/ehs246.

    Article  PubMed  Google Scholar 

  13. Camici, P. G., & Crea, F. (2007). Coronary microvascular dysfunction. The New England Journal of Medicine, 356, 830–840. doi:10.1056/NEJMra061889.

    Article  PubMed  CAS  Google Scholar 

  14. Camici, P. G., Olivotto, I., & Rimoldi, O. E. (2012). The coronary circulation and blood flow in left ventricular hypertrophy. Journal of Molecular and Cellular Cardiology, 52, 857–864. doi:10.1016/j.yjmcc.2011.08.028.

    Article  PubMed  CAS  Google Scholar 

  15. Steiner, M. K., Syrkina, O. L., Kolliputi, N., et al. (2009). Interleukin-6 overexpression induces pulmonary hypertension. Circulation Research, 104, 236–244. doi:10.1161/CIRCRESAHA.108.182014 (28 p following 244).

    Article  PubMed  CAS  Google Scholar 

  16. Nickerson, M. M., Song, J., Meisner, J. K., et al. (2009). Bone marrow-derived cell-specific chemokine (C-C motif) receptor-2 expression is required for arteriolar remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 1794–1801. doi:10.1161/ATVBAHA.109.194019.

    Article  PubMed  CAS  Google Scholar 

  17. Smeda, J. S., Lee, R. M., & Forrest, J. B. (1988). Structural and reactivity alterations of the renal vasculature of spontaneously hypertensive rats prior to and during established hypertension. Circulation Research, 63, 518–533.

    Article  PubMed  CAS  Google Scholar 

  18. Schadt, E. E. (2009). Molecular networks as sensors and drivers of common human diseases. Nature, 461, 218–223. doi:10.1038/nature08454.

    Article  PubMed  CAS  Google Scholar 

  19. Hubner, N., Wallace, C. A., Zimdahl, H., et al. (2005). Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics, 37, 243–253.

    Article  PubMed  CAS  Google Scholar 

  20. Opgen-Rhein, R., & Strimmer, K. (2007). From correlation to causation networks: a simple approximate learning algorithm and its application to high-dimensional plant gene expression data. BMC Systems Biology, 1, 37. doi:10.1186/1752-0509-1-37.

    Article  PubMed  Google Scholar 

  21. Pravenec, M., Churchill, P. C., Churchill, M. C., et al. (2008). Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nature Genetics, 40, 952–954. doi:10.1038/ng.164.

    Article  PubMed  CAS  Google Scholar 

  22. Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559. doi:10.1186/1471-2105-9-559.

    Article  PubMed  Google Scholar 

  23. Kanehisa, M., Goto, S., Sato, Y., et al. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40, D109–D114. doi:10.1093/nar/gkr988.

    Article  PubMed  CAS  Google Scholar 

  24. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37, 1–13. doi:10.1093/nar/gkn923.

    Article  Google Scholar 

  25. Rossin, E. J., Lage, K., Raychaudhuri, S., et al. (2011). Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genetics, 7, e1001273. doi:10.1371/journal.pgen.1001273.

    Article  PubMed  CAS  Google Scholar 

  26. Roider, H. G., Manke, T., O'Keeffe, S., et al. (2009). PASTAA: identifying transcription factors associated with sets of co-regulated genes. Bioinformatics (Oxford, England), 25, 435–442. doi:10.1093/bioinformatics/btn627.

    Article  CAS  Google Scholar 

  27. Sánchez, N. S., & Barnett, J. V. (2012). TGFβ and BMP-2 regulate epicardial cell invasion via TGFβR3 activation of the Par6/Smurf1/RhoA pathway. Cellular Signalling, 24, 539–548. doi:10.1016/j.cellsig.2011.10.006.

    Article  PubMed  Google Scholar 

  28. Berk, B. C., Fujiwara, K., & Lehoux, S. (2007). ECM remodeling in hypertensive heart disease. The Journal of Clinical Investigation, 117, 568–575. doi:10.1172/JCI31044.

    Article  PubMed  CAS  Google Scholar 

  29. Yang, F., Dong, A., Mueller, P., et al. (2012). Coronary artery remodeling in a model of left ventricular pressure overload is influenced by platelets and inflammatory cells. PloS One, 7, e40196. doi:10.1371/journal.pone.0040196.

    Article  PubMed  CAS  Google Scholar 

  30. Basu, R., Lee, J., Morton, J. S., et al. (2013). TIMP3 is the primary TIMP to regulate agonist-induced vascular remodelling and hypertension. Cardiovascular Research, 98, 360–371. doi:10.1093/cvr/cvt067.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, W., & Frangogiannis, N. G. (2013). Fibroblasts in post-infarction inflammation and cardiac repair. Biochimica et Biophysica Acta, 1833, 945–953. doi:10.1016/j.bbamcr.2012.08.023.

    Article  PubMed  CAS  Google Scholar 

  32. Bo, S., Mandrile, C., Milanesio, N., et al. (2012). Is left ventricular hypertrophy a low-level inflammatory state? A population-based cohort study. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 22, 668–676. doi:10.1016/j.numecd.2010.11.004.

    Article  PubMed  CAS  Google Scholar 

  33. Dobaczewski, M., Chen, W., & Frangogiannis, N. G. (2011). Transforming growth factor (TGF)-β signaling in cardiac remodeling. Journal of Molecular and Cellular Cardiology, 51, 600–606. doi:10.1016/j.yjmcc.2010.10.033.

    Article  PubMed  CAS  Google Scholar 

  34. Xu, Y., Wagner, D. R., Bekerman, E., et al. (2010). Connective tissue growth factor in regulation of RhoA mediated cytoskeletal tension associated osteogenesis of mouse adipose-derived stromal cells. PloS One, 5, e11279. doi:10.1371/journal.pone.0011279.

    Article  PubMed  Google Scholar 

  35. Panek, A. N., Posch, M. G., Alenina, N., et al. (2009). Connective tissue growth factor overexpression in cardiomyocytes promotes cardiac hypertrophy and protection against pressure overload. PloS One, 4, e6743. doi:10.1371/journal.pone.0006743.

    Article  PubMed  Google Scholar 

  36. Gravning, J., Ahmed, M. S., Von Lueder, T. G., et al. (2013). CCN2/CTGF attenuates myocardial hypertrophy and cardiac dysfunction upon chronic pressure-overload. International Journal of Cardiology. doi:10.1016/j.ijcard.2013.01.165.

    PubMed  Google Scholar 

  37. Blom, I. E., Van Dijk, A. J., De Weger, R. A., et al. (2001). Identification of human ccn2 (connective tissue growth factor) promoter polymorphisms. Molecular Pathology: MP, 54, 192–196.

    Article  CAS  Google Scholar 

  38. Daniels, A., Van Bilsen, M., Goldschmeding, R., et al. (2009). Connective tissue growth factor and cardiac fibrosis. Acta Physiologica (Oxford, England), 195, 321–338. doi:10.1111/j.1748-1716.2008.01936.x.

    Article  CAS  Google Scholar 

  39. Cecchi, F., Olivotto, I., Gistri, R., et al. (2003). Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. The New England Journal of Medicine, 349, 1027–1035. doi:10.1056/NEJMoa025050.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, R., Crump, J., & Reisin, E. (2003). Regression of left ventricular hypertrophy is a key goal of hypertension management. Current Hypertension Reports, 5, 301–308.

    Article  PubMed  Google Scholar 

  41. Maron, M. S., Olivotto, I., Maron, B. J., et al. (2009). The case for myocardial ischemia in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 54, 866–875. doi:10.1016/j.jacc.2009.04.072.

    Article  PubMed  Google Scholar 

  42. Lehner, B., & Lee, I. (2008). Network-guided genetic screening: building, testing and using gene networks to predict gene function. Briefings in Functional Genomics & Proteomics, 7, 217–227. doi:10.1093/bfgp/eln020.

    Article  CAS  Google Scholar 

  43. Benaglia, T., Chauveau, D., Hunter, D. R., & Young, D. (2009). mixtools: an R package for analyzing finite mixture models. Journal of Statistical Software, 32, 1–29.

    Google Scholar 

  44. Hebenstreit, D., Fang, M., Gu, M., et al. (2011). RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Molecular Systems Biology, 7, 497. doi:10.1038/msb.2011.28.

    Article  PubMed  Google Scholar 

  45. Zhang, B., & Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Statistical Applications in Genetics and Molecular Biology, 4(1). doi:10.2202/1544-6115.1128.

  46. Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30, 81–89.

    Google Scholar 

  47. Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4, 44–57. doi:10.1038/nprot.2008.211.

    Article  CAS  Google Scholar 

  48. Bryne, J. C., Valen, E., Tang, M.-H. E., et al. (2008). JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Research, 36, D102–D106. doi:10.1093/nar/gkm955.

    Article  PubMed  CAS  Google Scholar 

  49. Benjamini, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57, 289–300.

    Google Scholar 

  50. Hardin, J., Mitani, A., Hicks, L., & VanKoten, B. (2007). A robust measure of correlation between two genes on a microarray. BMC Bioinformatics, 8, 220. doi:10.1186/1471-2105-8-220.

    Article  PubMed  Google Scholar 

  51. Hannenhalli, S., Putt, M. E., Gilmore, J. M., et al. (2006). Transcriptional genomics associates FOX transcription factors with human heart failure. Circulation, 114, 1269–1276.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. HEALTH-F4-2010-241504 (EURATRANS) (E.P.), the Medical Research Council (E.P.), and the British Heart Foundation (PhD Studentship grant FS/11/25/28740; E.P. and A.M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Petretto.

Additional information

Associate Editor Enrique Lara-Pezzi oversaw the review of this article

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(XLSX 720 kb)

Online Resource 2

(XLSX 76 kb)

Online Resource 3

(PDF 108 kb)

Online Resource 4

(PDF 479 kb)

Online Resource 5

(PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Moral, A., Mancini, M., D’Amati, G. et al. Transcriptional Network Analysis for the Regulation of Left Ventricular Hypertrophy and Microvascular Remodeling. J. of Cardiovasc. Trans. Res. 6, 931–944 (2013). https://doi.org/10.1007/s12265-013-9504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9504-x

Keywords

Navigation