Skip to main content
Log in

Regression of left ventricular hypertrophy is a key goal of hypertension management

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Left ventricular hypertrophy (LVH) in patients with hypertension is associated with an increased risk for many cardiovascular events and predicts a higher mortality rate. The pathogenesis of LVH is complicated. In addition to the hemodynamic burden (pressure or volume overload) and demographic factors, several trophic humoral factors, such as angiotensin II, aldosterone, endothelin, leptin, and catecholamines, may also contribute to the development and progression of LVH. Effective antihypertensive therapy can reverse LVH as well as prevent its development. Regression of LVH decreases subsequent cardiovascular morbidity and mortality. The commonly used drugs have various effects on LVH. Angiotensin receptor blockers and angiotensin-converting enzyme inhibitors seem most effective. Several new agents, including direct antifibrotic drugs, aldosterone blockade, vasopeptidase inhibitors, and endothelin receptor antagonists that more specifically target the underlying pathogenesis of LVH may provide us with innovative approaches to treat LVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Agabiti Rosei E: Assessment of preclinical target organ damage in hypertension: left ventricular hypertrophy. J Hypertens 2002, 20:156–158.

    Article  PubMed  Google Scholar 

  2. Verdecchia P, Carini G, Circo A, et al.: Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol 2001, 38:1829–1835.This study demonstrated a strong, continuous, and independent relationship of LV mass to subsequent cardiovascular events.

    Article  PubMed  CAS  Google Scholar 

  3. Levy D, Garrison RJ, Savage DD, et al.: Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 1990, 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  4. Nova S, Abrignani MG, Nova G, et al.: Effects of drug therapy on cardiac arrhythmias and ischemia in hypertensives with LVH. Am J Hypertens 2001, 14:637–643.

    Article  Google Scholar 

  5. Dahlof B: Structural cardiovascular changes in essential hypertension. Studies on the effects of antihypertensive therapy. Blood Press 1992, 1:1–75.

    Google Scholar 

  6. Schmieder RE, Martus P, Klingbill A: Reversal of left ventricular hypertrophy in essential hypertension. A meta-analysis of randomized double-blind studies. JAMA 1996, 275:1507–1513.

    Article  PubMed  CAS  Google Scholar 

  7. Paolisso G, Tagliamonte MR, Galderisi M, et al.: Plasma leptin concentration, insulin sensitivity, and 24-hour ambulatory blood pressure and left ventricular geometry. Am J Hypertens 2001, 14:114–120.

    Article  PubMed  CAS  Google Scholar 

  8. Greenwood JP, Scott EM, Stoker JB, et al.: Hypertensive left ventricular hypertrophy: relation to peripheral sympathetic drive. J Am Coll Cardil 2001, 38:1711–1717.

    Article  CAS  Google Scholar 

  9. Koren MJ, Ulin RJ, Koren AT, et al.: Left ventricular mass change during treatment and outcome in patients with essential hypertension. Am J Hypertens 2002, 15:1021–1028. This study shows the benefits of LVH regression during antihypertensive treatment.

    Article  PubMed  Google Scholar 

  10. Zhang R, Reisin E: Obesity hypertension: the effects on cardiovascular and renal systems. Am J Hypertens 2000, 13:1308–1314.

    Article  PubMed  CAS  Google Scholar 

  11. London GM: Heterogeneity of left ventricular hypertrophy: does it have clinical implications? Nephrol Dial Transplant 1998, 13:17–19.

    Article  PubMed  CAS  Google Scholar 

  12. Muiesan ML: Left ventricular hypertrophy: a new approach for fibrosis inhibition. J Hypertens 2002, 20:611–613.

    Article  PubMed  CAS  Google Scholar 

  13. Brilla C, Funck R, Rupp H: Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation 2000, 102:1388–1393.

    PubMed  CAS  Google Scholar 

  14. Timms PM, Wright A, Maxwell P, et al.: Plasma tissue inhibitor of metalloproteinase-1 levels are elevated in essential hypertension and related to left ventricular hypertrophy. Am J Hypertens 2002, 15:269–272.This study found that the increased collagen 3 in the heart was due to a reduction in collagen degradation rather than an increase in its synthesis.

    Article  PubMed  CAS  Google Scholar 

  15. Levy D, Anderson KM, Savage DD, et al.: Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham heart study. Ann Intern Med 1988, 108:7–13.

    PubMed  CAS  Google Scholar 

  16. Schannwell CM, Schneppenheim M, Plehn G, et al.: Left ventricular diastolic function in physiologic and pathologic hypertrophy. Am J Hypertens 2002, 15:513–517.

    Article  PubMed  Google Scholar 

  17. Schillaci G, Verdecchia P, Porcellati C, et al.: Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension 2000, 35:580–586.

    PubMed  CAS  Google Scholar 

  18. Muiesan ML, Salvetti M, Rizzoni D, et al.: Association of change in left ventricular mass with prognosis during long-term antihypertensive treatment. J Hypertension 1995, 13:1091–1097.

    Article  CAS  Google Scholar 

  19. Devereux RB, Agabiti-Rosei E, Dahlof B, et al.: Regression of left ventricular hypertrophy is a surrogate endpoint for morbid events in hypertension treatment trials. J Hypertens 1996, 14:95–102.

    Article  Google Scholar 

  20. Vasan RS, Larson MG, Benjamin EJ, et al.: Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a populationbased cohort. J Am Coll Cardiol 1999, 33:1948–1955.

    Article  PubMed  CAS  Google Scholar 

  21. Verdecchia P, Schillaci G, Borgioni I, et al.: Prognostic significance of serial changes in left ventricular mass in essential hypertension. Circulation 1998, 97:48–54.

    PubMed  CAS  Google Scholar 

  22. Levy D, Salomon M, D’Agostino R, et al.: Prognostic implications of baseline electrocardiographic feature and their serial changes in subjects with left ventricular hypertrophy. Circulation 1994, 90:1786–1793.

    PubMed  CAS  Google Scholar 

  23. Mathew J, Sleight P, Lonn E, et al.: Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 2001, 104:1615–1621.

    PubMed  CAS  Google Scholar 

  24. Wachtell KJ, Bella JN, Rokkedal J, et al.: Change in diastolic left ventricular filling after one year of antihypertensive treatment. The losartan intervention for endpoint reduction in hypertension (LIFE) study. Circulation 2002, 105:1071–1076.

    Article  PubMed  Google Scholar 

  25. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group: Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs. diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2002, 288:2981–2997.A large study on hypertension that found thiazide diuretics to be superior in preventing one or more forms of cardiovascular events. Therefore, they should still be the first choice of antihypertensive therapy.

    Article  Google Scholar 

  26. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs. chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA 2000, 283:1967–1975.

    Article  Google Scholar 

  27. Dahlof B, Devereux RB, Kjeldsen SE, et al.: Cardiovascular morbidity and mortality in the losartan intervention for endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 2002, 359:995–1003.An important study on LVH that found that losartan decreases electrocardiogram-LVH more than atenolol and prevents more cardiovascular events and death than atenolol for a similar reduction in blood pressure.

    Article  PubMed  CAS  Google Scholar 

  28. Devereux RB, Palmieri V, Sharpe N, et al.: Effects of once-daily angiotensin-converting enzyme inhibition and calcium channel blockage-based antihypertensive treatment regiments on left ventricular hypertrophy and diastolic filling in hypertension. Circulation 2001, 104:1248–1254.

    PubMed  CAS  Google Scholar 

  29. Liebson P, Grandits G, Dianzumba S, et al.: Comparison of five antihypertensive monotheraphies and placebo for change in left ventricular mass in patients receiving nutritional-hygienic therapy in the treatment of mild hypertension study (TOMHS). Circulation 1995, 91:698–706.

    PubMed  CAS  Google Scholar 

  30. Zhang R, Thakur V, Morse S, Reisin E: Renal and cardiovascular considerations for the nonpharmacological and pharmacological therapies of obesity-hypertension. J. Human Hypertens 2002, 16:819–827.

    Article  CAS  Google Scholar 

  31. Devereux RB, Palmieri V, Liu JE, et al.: Progressive hypertrophy regression with sustained pressure reduction in hypertension: the losartan intervention for endpoint study (LIFE). J Hypertens 2002, 20(7):1445–1450.

    Article  PubMed  CAS  Google Scholar 

  32. Julien J, Dufloux MA, Prasquier R, et al.: Effects of captopril and minoxidil on left ventricular hypertrophy in resistant hypertensive patients: a 6-month double-blind comparison. J Am Coll Cardiol 1990, 16:137–139.

    Article  PubMed  CAS  Google Scholar 

  33. Gottdiener J, Reda D, Massie B, et al.: Effect of single-drug therapy on reduction of left ventricular mass in mild to moderate hypertension: comparison of six antihypertensive agents. Circulation 1997, 95:2007–2014.

    PubMed  CAS  Google Scholar 

  34. Unger T, Chung O, Csikos T, et al.: Angiotensin receptors. J Hypertens 1996, 14:S95-S103.

    Article  CAS  Google Scholar 

  35. Dahlof B: Left ventricular hypertrophy and angiotensin II antagonists. Am J Hypertens 2001, 14:174–182.

    Article  PubMed  CAS  Google Scholar 

  36. Ichiki T, Labosky PA, Shiota C, et al.: Effects on blood pressure and exploratory behavior of mice lacking angiotensin II type-2 receptor. Nature 1995, 377:748–750.

    Article  PubMed  CAS  Google Scholar 

  37. Masaki H, Kurihara T, Yamaki A, et al.: Cardiac -specific over expression of angiotensin II AT2 receptor causes attenuated response to AT1 receptor-mediated pressure and chronotropic effects. J Clin Invest 1998, 101:527–535.

    Article  PubMed  CAS  Google Scholar 

  38. Tedesco MA, Ratti G, Aquino D, et al.: Effects of losartan on hypertension and left ventricular mass: a long-term study. J Hum Hypertens 1998, 12:505–510.

    Article  PubMed  CAS  Google Scholar 

  39. Villatico-Campbell S, Rizzo V, Di Maio F, et al.: Antihypertensive therapy with losartan and fosinopril: efficacy in left ventricular hypertrophy regression [abstract]. Am J Hypertens 1998, 11:125A.

    Article  Google Scholar 

  40. Malmqvist K, Kahan T, Edner M, et al.: Regression of left ventricular hypertrophy in human hypertension with irbesartan. J Hypertens 2001, 19:1167–1176.

    Article  PubMed  CAS  Google Scholar 

  41. Kjeldsen SE, Dahlof Devereux RB, et al.: Effects of losartan on cardiovascular morbidity and mortality in patients with isolated systolic hypertension and left ventricular hypertrophy: a losartan intervention for endpoint reduction (LIFE) substudy. JAMA 2002, 288:1491–1498.

    Article  PubMed  CAS  Google Scholar 

  42. Weber MA: Vasopeptidase inhibitors. Lancet 2001, 358:1525–1532.

    Article  PubMed  CAS  Google Scholar 

  43. Lariviere R, Lebel M, Rene De Cotret P: Cardiovascular and renal protective effects of omapatrilat in rats with chronic renal failure. J Am Soc Nephrol 2001, 12:A2329.

    Google Scholar 

  44. Trippodo NC, Fox M, Monticello TM, et al.: Vasopeptidase inhibition with omapatrilat improves cardiac geometry and survival in cardiomyopathic hamsters more than does ACE inhibition with captopril. J Cardiovasc Pharmacol 1999, 34:782–790.

    Article  PubMed  CAS  Google Scholar 

  45. Rouleau JL, Pfeffer MA, Stewart DJ, et al.: Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patient with heart failure; IMPRESS randomized trial. Lancet 2000, 356:615–620.

    Article  PubMed  CAS  Google Scholar 

  46. Rocha R, Stier CT, Kifor I, et al.: Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology 2000, 141:3871–3878.

    Article  PubMed  CAS  Google Scholar 

  47. Rocha R, Chander PN, Zuckerman A, et al.: Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 1999, 33:232–237.

    PubMed  CAS  Google Scholar 

  48. Schmidt BMW, Schmieder RE: Aldosterone-induced cardiac damage: focus on blood pressure independent effects. Am J Hypertens 2003, 16:80–86.

    Article  PubMed  CAS  Google Scholar 

  49. Epstein M, Buchalew V, Martinez F: Antiproteinuric efficacy of eplerenone, enalapril, and eplerenone/enalapril combination therapy in diabetic hypertensives with microalbuminuria.Am J Hypertens 2002, 15(4 pt 2):24A.

    Article  Google Scholar 

  50. Pitt B, Reichek N, Metscher B, et al.: Efficacy and safety of eplerenone, enalapril, and eplerenone/enalapril combination therapy in patients with left ventricular hypertrophy. Am J Hypertens 2002, 15(4 pt 2):23A-24A.

    Article  Google Scholar 

  51. Pitt B, Zannad F, Remme WJ, et al.: The effect of spironolactone on mortality and morbidity in patients with severe heart failure. N Engl J Med 1999, 341:709–717.

    Article  PubMed  CAS  Google Scholar 

  52. Mizuno Y, Yoshimura M, Yasue H, et al.: Aldosterone production is activated in failing ventricle in humans. Circulation 2001, 103:72–77.

    PubMed  CAS  Google Scholar 

  53. Zannad F, Alla F, Dousset B, et al.: Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Circulation 2000, 102:2700–2706.

    PubMed  CAS  Google Scholar 

  54. Sato A, Suzuki Y, Saruta T: Effects of spironolactone and angiotensin-converting enzyme inhibitor on left ventricular hypertrophy in patients with essential hypertension. Hypertens Res 1999, 22:17–22.

    PubMed  CAS  Google Scholar 

  55. Park JB, Schiffrin EL: Cardiac and vascular fibrosis and hypertrophy in aldosterone-infused rats: role of endothelin-1. Am J Hypertens 2002, 15:164–169.

    Article  PubMed  CAS  Google Scholar 

  56. Yamamoto K, Masuyama T, Sakata T, et al.: Prevention of diastolic heart failure by endothelin type A receptor antagonist through inhibition of ventricular structural remodeling in hypertensive heart. J Hypertens 2002, 20:753–761.This animal study shows the benefits of endothelin receptor blockage in preventing LVH and fibrosis.

    Article  PubMed  Google Scholar 

  57. Krum H, Viskoper RJ, Lacourciere Y, et al.: The effect of an endothelin receptor antagonist, bosentan, on blood pressure in patients with essential hypertension. N Engl J Med 1998, 338:784–790.

    Article  PubMed  CAS  Google Scholar 

  58. Nakov R, Pfarr E, Eberle S: Darusentan: an effective endothelin A receptor antagonist for treatment of hypertension. Am J Hypertens 2002, 15:583–589.

    Article  PubMed  CAS  Google Scholar 

  59. Sakai S, Miyauchi T, Kobayashi M, et al.: Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 1996, 384:353–355.

    Article  PubMed  CAS  Google Scholar 

  60. Varo N, Iraburu MJ, Varela M, et al.: Chronic AT1 blockade stimulates extracellular collagen type 1 degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension 2000, 35:1197–1202.

    PubMed  CAS  Google Scholar 

  61. Hocher B, Godes M, Olivier J, et al.: Inhibition of left ventricular fibrosis by tranilast in rats with renovascular hypertension. J Hypertens 2002, 20:745–751.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, R., Crump, J. & Reisin, E. Regression of left ventricular hypertrophy is a key goal of hypertension management. Current Science Inc 5, 301–308 (2003). https://doi.org/10.1007/s11906-003-0038-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-003-0038-5

Keywords

Navigation