Skip to main content

Advertisement

Log in

Hypertrophy Signaling Pathways in Experimental Chronic Aortic Regurgitation

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The development of left ventricular hypertrophy and dysfunction in aortic regurgitation (AR) has only been sparsely studied experimentally. In a new model of chronic AR in rats, we examined activation of molecular pathways involved in myocardial hypertrophy. Chronic AR was produced by damaging one or two valve cusps, resulting in eccentric remodeling and left ventricular dysfunction, with no increase in overall fibrosis. Western blotting showed increased activation of Akt and p38 at 12 weeks and of c-Jun amino-terminal kinase at 2 weeks, decreased activation of extracellular regulated kinase 5 at both 2 and 12 weeks, while activation of calcium/calmodulin-dependent protein kinase II and extracellular regulated kinase 1/2 was unchanged. Expression of calcineurin and ANF was also unchanged. Eccentric hypertrophy and early cardiac dysfunction in experimental AR are associated with a pattern of activation of intracellular pathways different from that seen with pathological hypertrophy in pressure overload, and more similar to that associated with benign physiological hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mudd, J. O., & Kass, D. A. (2008). Tackling heart failure in the twenty-first century. Nature, 451(7181), 919–928.

    Article  PubMed  CAS  Google Scholar 

  2. Bernardo, B. C., Weeks, K. L., Pretorius, L., & McMullen, J. R. (2010). Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacology & Therapeutics, 128(1), 191–227.

    Article  CAS  Google Scholar 

  3. Plante, E., Gaudreau, M., Lachance, D., Drolet, M. C., Roussel, E., Gauthier, C., et al. (2004). Angiotensin-converting enzyme inhibitor captopril prevents volume overload cardiomyopathy in experimental chronic aortic valve regurgitation. Canadian Journal of Physiology and Pharmacology, 82(3), 191–199.

    Article  PubMed  CAS  Google Scholar 

  4. Plante, E., Lachance, D., Gaudreau, M., Drolet, M. C., Roussel, E., Arsenault, M., et al. (2004). Effectiveness of beta-blockade in experimental chronic aortic regurgitation. Circulation, 110(11), 1477–1483.

    Article  PubMed  CAS  Google Scholar 

  5. Evangelista, A., Tornos, P., Sambola, A., Permanyer-Miralda, G., & Soler-Soler, J. (2005). Long-term vasodilator therapy in patients with severe aortic regurgitation. The New England Journal of Medicine, 353(13), 1342–1349.

    Article  PubMed  CAS  Google Scholar 

  6. Miyamoto, T., Takeishi, Y., Takahashi, H., Shishido, T., Arimoto, T., Tomoike, H., et al. (2004). Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload. Basic Research in Cardiology, 99(5), 328–337.

    Article  PubMed  CAS  Google Scholar 

  7. Toischer, K., Rokita, A. G., Unsold, B., Zhu, W., Kararigas, G., Sossalla, S., et al. (2010). Differential cardiac remodeling in preload versus afterload. Circulation, 122(10), 993–1003.

    Article  PubMed  Google Scholar 

  8. Bekeredjian, R., & Grayburn, P. A. (2005). Valvular heart disease: aortic regurgitation. Circulation, 112(1), 125–134.

    Article  PubMed  Google Scholar 

  9. Arsenault, M., Plante, E., Drolet, M. C., & Couet, J. (2002). Experimental aortic regurgitation in rats under echocardiographic guidance. The Journal of Heart Valve Disease, 11(1), 128–134.

    PubMed  Google Scholar 

  10. Yin, F. C. (1981). Ventricular wall stress. Circulation Research, 49(4), 829–842.

    Article  PubMed  CAS  Google Scholar 

  11. Sullivan, L. M. (2008). Repeated measures. Circulation, 117(9), 1238–1243.

    Article  PubMed  Google Scholar 

  12. Abassi, Z., Goltsman, I., Karram, T., Winaver, J., & Hoffman, A. (2011). Aortocaval fistula in rat: a unique model of volume-overload congestive heart failure and cardiac hypertrophy. Journal of Biomedicine and Biotechnology, 2011, 729497.

    Article  PubMed  Google Scholar 

  13. Uematsu, T., Yamazaki, T., Matsuno, H., Hayashi, Y., & Nakashima, M. (1989). A simple method for producing graded aortic insufficiencies in rats and subsequent development of cardiac hypertrophy. Journal of Pharmacological Methods, 22(4), 249–257.

    Article  PubMed  CAS  Google Scholar 

  14. Magid, N. M., Opio, G., Wallerson, D. C., Young, M. S., & Borer, J. S. (1994). Heart failure due to chronic experimental aortic regurgitation. The American Journal of Physiology, 267(2 Pt 2), H556–H562.

    PubMed  CAS  Google Scholar 

  15. Borer, J. S., Truter, S., Herrold, E. M., Falcone, D. J., Pena, M., Carter, J. N., et al. (2002). Myocardial fibrosis in chronic aortic regurgitation: molecular and cellular responses to volume overload. Circulation, 105(15), 1837–1842.

    Article  PubMed  CAS  Google Scholar 

  16. Truter, S. L., Catanzaro, D. F., Supino, P. G., Gupta, A., Carter, J., Ene, A. R., et al. (2009). Fibronectin gene expression in aortic regurgitation: relative roles of mitogen-activated protein kinases. Cardiology, 113(4), 291–298.

    Article  PubMed  CAS  Google Scholar 

  17. Truter, S. L., Catanzaro, D. F., Supino, P. G., Gupta, A., Carter, J., Herrold, E. M., et al. (2009). Differential expression of matrix metalloproteinases and tissue inhibitors and extracellular matrix remodeling in aortic regurgitant hearts. Cardiology, 113(3), 161–168.

    Article  PubMed  CAS  Google Scholar 

  18. Magid, N. M., Wallerson, D. C., Borer, J. S., Mukherjee, A., Young, M. S., Devereux, R. B., et al. (1992). Left ventricular diastolic and systolic performance during chronic experimental aortic regurgitation. The American Journal of Physiology, 263(1 Pt 2), H226–H233.

    PubMed  CAS  Google Scholar 

  19. Florenzano, F., & Glantz, S. A. (1987). Left ventricular mechanical adaptation to chronic aortic regurgitation in intact dogs. The American Journal of Physiology, 252(5 Pt 2), H969–H984.

    PubMed  CAS  Google Scholar 

  20. Gaynor, J. W., Feneley, M. P., Gall, S. A., Jr., Savitt, M. A., Silvestry, S. C., Davis, J. W., et al. (1997). Left ventricular adaptation to aortic regurgitation in conscious dogs. The Journal of Thoracic and Cardiovascular Surgery, 113(1), 149–158.

    Article  PubMed  CAS  Google Scholar 

  21. Olsen, N. T., Sogaard, P., Larsson, H. B., Goetze, J. P., Jons, C., Mogelvang, R., et al. (2011). Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. JACC Cardiovascular Imaging, 4(3), 223–230.

    Article  PubMed  Google Scholar 

  22. Shioi, T., McMullen, J. R., Kang, P. M., Douglas, P. S., Obata, T., Franke, T. F., et al. (2002). Akt/protein kinase B promotes organ growth in transgenic mice. Molecular and Cellular Biology, 22(8), 2799–2809.

    Article  PubMed  CAS  Google Scholar 

  23. McMullen, J. R., Shioi, T., Huang, W. Y., Zhang, L., Tarnavski, O., Bisping, E., et al. (2004). The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. The Journal of Biological Chemistry, 279(6), 4782–4793.

    Article  PubMed  CAS  Google Scholar 

  24. McMullen, J. R., Shioi, T., Zhang, L., Tarnavski, O., Sherwood, M. C., Kang, P. M., et al. (2003). Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12355–12360.

    Article  PubMed  CAS  Google Scholar 

  25. DeBosch, B., Treskov, I., Lupu, T. S., Weinheimer, C., Kovacs, A., Courtois, M., et al. (2006). Akt1 is required for physiological cardiac growth. Circulation, 113(17), 2097–2104.

    Article  PubMed  CAS  Google Scholar 

  26. McMullen, J. R., Amirahmadi, F., Woodcock, E. A., Schinke-Braun, M., Bouwman, R. D., Hewitt, K. A., et al. (2007). Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 612–617.

    Article  PubMed  CAS  Google Scholar 

  27. Bouchard-Thomassin, A. A., Lachance, D., Drolet, M. C., Couet, J., & Arsenault, M. (2011). A high-fructose diet worsens eccentric left ventricular hypertrophy in experimental volume overload. American Journal of Physiology. Heart and Circulatory Physiology, 300(1), H125–H134.

    Article  PubMed  CAS  Google Scholar 

  28. Shimoyama, M., Hayashi, D., Takimoto, E., Zou, Y., Oka, T., Uozumi, H., et al. (1999). Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation, 100(24), 2449–2454.

    Article  PubMed  CAS  Google Scholar 

  29. Lim, H. W., De Windt, L. J., Steinberg, L., Taigen, T., Witt, S. A., Kimball, T. R., et al. (2000). Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation, 101(20), 2431–2437.

    Article  PubMed  CAS  Google Scholar 

  30. Braun, M. U., LaRosée, P., Simonis, G., Borst, M. M., & Strasser, R. H. (2004). Regulation of protein kinase C isozymes in volume overload cardiac hypertrophy. Molecular and Cellular Biochemistry, 262(1), 135–143.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, R., Khoo, M. S., Wu, Y., Yang, Y., Grueter, C. E., Ni, G., et al. (2005). Calmodulin kinase II inhibition protects against structural heart disease. Nature Medicine, 11(4), 409–417.

    Article  PubMed  CAS  Google Scholar 

  32. Backs, J., Backs, T., Neef, S., Kreusser, M. M., Lehmann, L. H., Patrick, D. M., et al. (2009). The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 2342–2347.

    Article  PubMed  CAS  Google Scholar 

  33. Rose, B. A., Force, T., & Wang, Y. (2010). Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiological Reviews, 90(4), 1507–1546.

    Article  PubMed  CAS  Google Scholar 

  34. Nicol, R. L., Frey, N., Pearson, G., Cobb, M., Richardson, J., & Olson, E. N. (2001). Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. The EMBO Journal, 20(11), 2757–2767.

    Article  PubMed  CAS  Google Scholar 

  35. Lachance, D., Plante, E., Roussel, E., Drolet, M. C., Couet, J., & Arsenault, M. (2008). Early left ventricular remodeling in acute severe aortic regurgitation: insights from an animal model. The Journal of Heart Valve Disease, 17(3), 300–308.

    PubMed  Google Scholar 

  36. Kehat, I., Davis, J., Tiburcy, M., Accornero, F., Saba-El-Leil, M. K., Maillet, M., et al. (2011). Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circulation Research, 108(2), 176–183.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a National Institute of Health grant to Dr. Abraham (AG 022554). Dr. Olsen was supported by a grant from the Danish Heart Foundation, Copenhagen, Denmark.

Conflict of Interest

The authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodore P. Abraham.

Additional information

Associate Editor Angela Taylor oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, N.T., Dimaano, V.L., Fritz-Hansen, T. et al. Hypertrophy Signaling Pathways in Experimental Chronic Aortic Regurgitation. J. of Cardiovasc. Trans. Res. 6, 852–860 (2013). https://doi.org/10.1007/s12265-013-9503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9503-y

Keywords

Navigation