Skip to main content

Advertisement

Log in

Biological Imaging of Atherosclerosis: Moving Beyond Anatomy

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Biological or molecular imaging is now providing exciting new strategies to study atherosclerosis in both animals and humans. These technologies hold the promise to provide disease-specific, molecular information within the context of a systemic or organ-specific disease beyond traditional anatomical-based imaging. By integration of biological, chemical, and anatomical imaging knowledge into diagnostic strategies, a more comprehensive and predictive picture of atherosclerosis is likely to emerge. As such, biological imaging is well positioned to study different stages of atherosclerosis and its treatment, including the sequence of atheroma initiation, progression, and plaque rupture. In this review, we describe the evolving concepts in atherosclerosis imaging with a focus on coronary artery disease, and we provide an overview of recent exciting translational developments in biological imaging. The illuminated examples and discussions will highlight how biological imaging is providing new clinical approaches to identify high-risk plaques, and to streamline the development process of new atherosclerosis therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nabel, E. G., & Braunwald, E. (2012). A tale of coronary artery disease and myocardial infarction. The New England Journal of Medicine, 366(1), 54–63. doi:10.1056/NEJMra1112570.

    Article  PubMed  CAS  Google Scholar 

  2. Heidenreich, P. A., Trogdon, J. G., Khavjou, O. A., Butler, J., Dracup, K., Ezekowitz, M. D., Finkelstein, E. A., Hong, Y., Johnston, S. C., Khera, A., Lloyd-Jones, D. M., Nelson, S. A., Nichol, G., Orenstein, D., Wilson, P. W., Woo, Y. J., & American Heart Association Advocacy Coordinating Committee, Stroke Council, Council on Cardiovascular Radiology and Intervention, Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Arteriosclerosis, Thrombosis, and Vascular Biology, Council on Cardiopulmonary Critical Care, Perioperative and Resuscitation, Council on Cardiovascular Nursing, Council on the Kidney in Cardiovascular Disease, Council on Cardiovascular Surgery and Anesthesia, Interdisciplinary Council on Quality of Care and Outcomes Research. (2011). Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation, 123(8), 933–944. doi:10.1161/CIR.0b013e31820a55f5.

    Article  PubMed  Google Scholar 

  3. Berenson, G. S., Srinivasan, S. R., Bao, W., Newman, W. P., 3rd, Tracy, R. E., & Wattigney, W. A. (1998). Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. The New England Journal of Medicine, 338(23), 1650–1656. doi:10.1056/NEJM199806043382302.

    Article  PubMed  CAS  Google Scholar 

  4. Strong, J. P., Malcom, G. T., McMahan, C. A., Tracy, R. E., Newman, W. P., 3rd, Herderick, E. E., & Cornhill, J. F. (1999). Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA: The Journal of the American Medical Association, 281(8), 727–735.

    Article  CAS  Google Scholar 

  5. Falk, E., Nakano, M., Benton, J. F., Finn, A. V., & Virmani, R. (2012). Update on acute coronary syndromes: the pathologists' view. European Heart Journal. doi:10.1093/eurheartj/ehs411.

    Google Scholar 

  6. Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317–325. doi:10.1038/nature10146.

    Article  PubMed  CAS  Google Scholar 

  7. Kolodgie, F. D., Gold, H. K., Burke, A. P., Fowler, D. R., Kruth, H. S., Weber, D. K., Farb, A., Guerrero, L. J., Hayase, M., Kutys, R., Narula, J., Finn, A. V., & Virmani, R. (2003). Intraplaque hemorrhage and progression of coronary atheroma. The New England Journal of Medicine, 349(24), 2316–2325. doi:10.1056/NEJMoa035655.

    Article  PubMed  CAS  Google Scholar 

  8. Kolodgie, F. D., Burke, A. P., Farb, A., Gold, H. K., Yuan, J., Narula, J., Finn, A. V., & Virmani, R. (2001). The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Current Opinion in Cardiology, 16(5), 285–292.

    Article  PubMed  CAS  Google Scholar 

  9. Virmani, R., Burke, A. P., Farb, A., & Kolodgie, F. D. (2006). Pathology of the vulnerable plaque. Journal of the American College of Cardiology, 47(8 Suppl), C13–C18. doi:10.1016/j.jacc.2005.10.065.

    Article  PubMed  CAS  Google Scholar 

  10. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A., & Schwartz, S. M. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(5), 1262–1275.

    Article  PubMed  CAS  Google Scholar 

  11. Wang, J. C., Normand, S. L., Mauri, L., & Kuntz, R. E. (2004). Coronary artery spatial distribution of acute myocardial infarction occlusions Circulation, 110(3), 278–284. doi:10.1161/01.CIR.0000135468.67850.F4.

    Article  PubMed  Google Scholar 

  12. Burke, A. P., Kolodgie, F. D., Farb, A., Weber, D., & Virmani, R. (2002). Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation, 105(3), 297–303.

    Article  PubMed  Google Scholar 

  13. Hackett, D., Davies, G., & Maseri, A. (1988). Pre-existing coronary stenoses in patients with first myocardial infarction are not necessarily severe. European Heart Journal, 9(12), 1317–1323.

    PubMed  CAS  Google Scholar 

  14. Wentzel, J. J., Chatzizisis, Y. S., Gijsen, F. J., Giannoglou, G. D., Feldman, C. L., & Stone, P. H. (2012). Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovascular Research, 96(2), 234–243. doi:10.1093/cvr/cvs217.

    Article  PubMed  CAS  Google Scholar 

  15. Stone, P. H., Saito, S., Takahashi, S., Makita, Y., Nakamura, S., Kawasaki, T., Takahashi, A., Katsuki, T., Nakamura, S., Namiki, A., Hirohata, A., Matsumura, T., Yamazaki, S., Yokoi, H., Tanaka, S., Otsuji, S., Yoshimachi, F., Honye, J., Harwood, D., Reitman, M., Coskun, A. U., Papafaklis, M. I., Feldman, C. L., & Investigators, P. (2012). Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation, 126(2), 172–181. doi:10.1161/CIRCULATIONAHA.112.096438.

    Article  PubMed  Google Scholar 

  16. Arbab-Zadeh, A., Nakano, M., Virmani, R., & Fuster, V. (2012). Acute coronary events. Circulation, 125(9), 1147–1156. doi:10.1161/CIRCULATIONAHA.111.047431.

    Article  PubMed  Google Scholar 

  17. Mann, J., & Davies, M. J. (1999). Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart, 82(3), 265–268.

    PubMed  CAS  Google Scholar 

  18. Hudson, J., & McCaughey, W. T. (1974). Mural thrombosis and atherogenesis in coronary arteries and aorta. An investigation using antifibrin and antiplatelet sera. Atherosclerosis, 19(3), 543–553.

    Article  PubMed  CAS  Google Scholar 

  19. Davies, M. J. (1996). The contribution of thrombosis to the clinical expression of coronary atherosclerosis. Thrombosis Research, 82(1), 1–32.

    Article  PubMed  CAS  Google Scholar 

  20. Arbustini, E., Grasso, M., Diegoli, M., Pucci, A., Bramerio, M., Ardissino, D., Angoli, L., de Servi, S., Bramucci, E., Mussini, A., et al. (1991). Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study. The American Journal of Cardiology, 68(7), 36B–50B.

    Article  PubMed  CAS  Google Scholar 

  21. Burke, A. P., Kolodgie, F. D., Farb, A., Weber, D. K., Malcom, G. T., Smialek, J., & Virmani, R. (2001). Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation, 103(7), 934–940.

    Article  PubMed  CAS  Google Scholar 

  22. Finn, A. V., Nakano, M., Narula, J., Kolodgie, F. D., & Virmani, R. (2010). Concept of vulnerable/unstable plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(7), 1282–1292. doi:10.1161/ATVBAHA.108.179739.

    Article  PubMed  CAS  Google Scholar 

  23. Joshi, F. R., Lindsay, A. C., Obaid, D. R., Falk, E., & Rudd, J. H. (2012). Non-invasive imaging of atherosclerosis. European Heart Journal—Cardiovascular Imaging, 13(3), 205–218. doi:10.1093/ehjci/jer319.

    Article  PubMed  Google Scholar 

  24. Yuan, C., Beach, K. W., Smith, L. H., Jr., & Hatsukami, T. S. (1998). Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging. Circulation, 98(24), 2666–2671.

    Article  PubMed  CAS  Google Scholar 

  25. Fayad, Z. A., & Fuster, V. (2000). Characterization of atherosclerotic plaques by magnetic resonance imaging. Annals of the New York Academy of Sciences, 902, 173–186.

    Article  PubMed  CAS  Google Scholar 

  26. Yuan, C., Kerwin, W. S., Ferguson, M. S., Polissar, N., Zhang, S., Cai, J., & Hatsukami, T. S. (2002). Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. Journal of Magnetic Resonance Imaging, 15(1), 62–67.

    Article  PubMed  Google Scholar 

  27. Takaya, N., Yuan, C., Chu, B., Saam, T., Underhill, H., Cai, J., Tran, N., Polissar, N. L., Isaac, C., Ferguson, M. S., Garden, G. A., Cramer, S. C., Maravilla, K. R., Hashimoto, B., & Hatsukami, T. S. (2006). Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI—initial results. Stroke A Journal of Cerebral Circulation, 37(3), 818–823. doi:10.1161/01.STR.0000204638.91099.91.

    Article  PubMed  Google Scholar 

  28. Corti, R., Fuster, V., Fayad, Z. A., Worthley, S. G., Helft, G., Smith, D., Weinberger, J., Wentzel, J., Mizsei, G., Mercuri, M., & Badimon, J. J. (2002). Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years' follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation, 106(23), 2884–2887.

    Article  PubMed  CAS  Google Scholar 

  29. Fayad, Z. A., Mani, V., Woodward, M., Kallend, D., Abt, M., Burgess, T., Fuster, V., Ballantyne, C. M., Stein, E. A., Tardif, J. C., Rudd, J. H., Farkouh, M. E., Tawakol, A., & dal-PLAQUE Investigators. (2011). Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet, 378(9802), 1547–1559. doi:10.1016/S0140-6736(11)61383-4.

    Article  PubMed  CAS  Google Scholar 

  30. Chiribiri, A., Ishida, M., Nagel, E., & Botnar, R. (2011). Coronary imaging with cardiovascular magnetic resonance: current state of the art. Progress in Cardiovascular Diseases, 54(3), 240–252. doi:10.1016/j.pcad.2011.09.002.

    Article  PubMed  Google Scholar 

  31. Budoff, M. J., Achenbach, S., Blumenthal, R. S., Carr, J. J., Goldin, J. G., Greenland, P., Guerci, A. D., Lima, J. A., Rader, D. J., Rubin, G. D., Shaw, L. J., Wiegers, S. E., & American Heart Association Committee on Cardiovascular Imaging and Intervention, American Heart Association Council on Cardiovascular Imaging and Intervention, American Heart Association Committee on Cardiac Imaging, Council on Clinical Cardiology. (2006). Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation, 114(16), 1761–1791. doi:10.1161/CIRCULATIONAHA.106.178458.

    Article  PubMed  Google Scholar 

  32. Perrone-Filardi, P., Musella, F., Savarese, G., Cecere, M., Marciano, C., Scala, O., Rengo, G., Dellegrottaglie, S., Cuocolo, A., & Leosco, D. (2012). Coronary computed tomography: current role and future perspectives for cardiovascular risk stratification. European Heart Journal—Cardiovascular Imaging, 13(6), 453–458. doi:10.1093/ehjci/jes081.

    Article  PubMed  Google Scholar 

  33. Shaw, L., Hausleiter, J., Achenbach, S., Al-Mallah, M., Berman, D., Budoff, M., Cademartiri, F., Callister, T., Chang, H.-J., Kim, Y.-J., Cheng, V., Chow, B., Cury, R., Delago, A., Dunning, A., Feuchtner, G., Hadamitzky, M., Karlsberg, R., Kaufmann, P., Leipsic, J., Lin, F., Chinnaiyan, K., Maffei, E., Raff, G., Villines, T., Labounty, T., Gomez, M., Min, J., & Investigators, C. R. (2012). Coronary computed tomographic angiography as a gatekeeper to invasive diagnostic and surgical procedures: results from the multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: an International Multicenter) registry. Journal of the American College of Cardiology, 60(20), 2103–2114. doi:10.1016/j.jacc.2012.05.062.

    Article  PubMed  Google Scholar 

  34. Motoyama, S., Sarai, M., Harigaya, H., Anno, H., Inoue, K., Hara, T., Naruse, H., Ishii, J., Hishida, H., Wong, N. D., Virmani, R., Kondo, T., Ozaki, Y., & Narula, J. (2009). Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. Journal of the American College of Cardiology, 54(1), 49–57. doi:10.1016/j.jacc.2009.02.068.

    Article  PubMed  Google Scholar 

  35. Ferencik, M., Schlett, C., Ghoshhajra, B., Kriegel, M., Joshi, S., Maurovich-Horvat, P., Rogers, I., Banerji, D., Bamberg, F., Truong, Q., Brady, T., Nagurney, J., & Hoffmann, U. (2012). A computed tomography-based coronary lesion score to predict acute coronary syndrome among patients with acute chest pain and significant coronary stenosis on coronary computed tomographic angiogram. The American Journal of Cardiology, 110(2), 183–189. doi:10.1016/j.amjcard.2012.02.066.

    Article  PubMed  Google Scholar 

  36. Polak, J. F., Shemanski, L., O’Leary, D. H., Lefkowitz, D., Price, T. R., Savage, P. J., Brant, W. E., & Reid, C. (1998). Hypoechoic plaque at US of the carotid artery: an independent risk factor for incident stroke in adults aged 65 years or older. Cardiovascular Health Study. Radiology, 208(3), 649–654.

    PubMed  CAS  Google Scholar 

  37. O’Leary, D. H., Polak, J. F., Kronmal, R. A., Manolio, T. A., Burke, G. L., & Wolfson, S. K., Jr. (1999). Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. The New England Journal of Medicine, 340(1), 14–22. doi:10.1056/NEJM199901073400103.

    Article  PubMed  Google Scholar 

  38. Xiong, L., Deng, Y. B., Zhu, Y., Liu, Y. N., & Bi, X. J. (2009). Correlation of carotid plaque neovascularization detected by using contrast-enhanced US with clinical symptoms. Radiology, 251(2), 583–589. doi:10.1148/radiol.2512081829.

    Article  PubMed  Google Scholar 

  39. Feinstein, S. B. (2006). Contrast ultrasound imaging of the carotid artery vasa vasorum and atherosclerotic plaque neovascularization. Journal of the American College of Cardiology, 48(2), 236–243. doi:10.1016/j.jacc.2006.02.068.

    Article  PubMed  Google Scholar 

  40. McCabe, J. M., & Croce, K. J. (2012). Optical coherence tomography. Circulation, 126(17), 2140–2143. doi:10.1161/CIRCULATIONAHA.112.117143.

    Article  PubMed  Google Scholar 

  41. Kubo, T., Imanishi, T., Takarada, S., Kuroi, A., Ueno, S., Yamano, T., Tanimoto, T., Matsuo, Y., Masho, T., Kitabata, H., Tsuda, K., Tomobuchi, Y., & Akasaka, T. (2007). Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. Journal of the American College of Cardiology, 50(10), 933–939. doi:10.1016/j.jacc.2007.04.082.

    Article  PubMed  Google Scholar 

  42. Tearney, G. J., Waxman, S., Shishkov, M., Vakoc, B. J., Suter, M. J., Freilich, M. I., Desjardins, A. E., Oh, W. Y., Bartlett, L. A., Rosenberg, M., & Bouma, B. E. (2008). Three-dimensional coronary artery microscopy by intracoronary optical frequency domain imaging. JACC. Cardiovascular Imaging, 1(6), 752–761. doi:10.1016/j.jcmg.2008.06.007.

    Article  PubMed  Google Scholar 

  43. Layland, J., Wilson, A. M., Lim, I., & Whitbourn, R. J. (2011). Virtual histology: a window to the heart of atherosclerosis. Heart, Lung & Circulation, 20(10), 615–621. doi:10.1016/j.hlc.2010.12.002.

    Article  CAS  Google Scholar 

  44. Peters, R. J., Kok, W. E., Havenith, M. G., Rijsterborgh, H., van der Wal, A. C., & Visser, C. A. (1994). Histopathologic validation of intracoronary ultrasound imaging. Journal of the American Society of Echocardiography: Official Publication of the American Society of Echocardiography, 7(3 Pt 1), 230–241.

    CAS  Google Scholar 

  45. Moore, M. P., Spencer, T., Salter, D. M., Kearney, P. P., Shaw, T. R., Starkey, I. R., Fitzgerald, P. J., Erbel, R., Lange, A., McDicken, N. W., Sutherland, G. R., & Fox, K. A. (1998). Characterisation of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation. Heart, 79(5), 459–467.

    PubMed  CAS  Google Scholar 

  46. Stone, G. W., Maehara, A., Lansky, A. J., de Bruyne, B., Cristea, E., Mintz, G. S., Mehran, R., McPherson, J., Farhat, N., Marso, S. P., Parise, H., Templin, B., White, R., Zhang, Z., Serruys, P. W., & Investigators, P. (2011). A prospective natural-history study of coronary atherosclerosis. The New England Journal of Medicine, 364(3), 226–235. doi:10.1056/NEJMoa1002358.

    Article  PubMed  CAS  Google Scholar 

  47. Jaffer, F. A., Libby, P., & Weissleder, R. (2007). Molecular imaging of cardiovascular disease. Circulation, 116(9), 1052–1061. doi:10.1161/CIRCULATIONAHA.106.647164.

    Article  PubMed  Google Scholar 

  48. Sanz, J., & Fayad, Z. A. (2008). Imaging of atherosclerotic cardiovascular disease. Nature, 451(7181), 953–957. doi:10.1038/nature06803.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, I. Y., & Wu, J. C. (2011). Cardiovascular molecular imaging: focus on clinical translation. Circulation, 123(4), 425–443. doi:10.1161/CIRCULATIONAHA.109.916338.

    Article  PubMed  Google Scholar 

  50. Gaemperli, O., Saraste, A., & Knuuti, J. (2012). Cardiac hybrid imaging. European Heart Journal—Cardiovascular Imaging, 13(1), 51–60. doi:10.1093/ejechocard/jer240.

    Article  PubMed  Google Scholar 

  51. Tang, T. Y., Howarth, S. P., Miller, S. R., Graves, M. J., Patterson, A. J., JM, U.-K.-I., Li, Z. Y., Walsh, S. R., Brown, A. P., Kirkpatrick, P. J., Warburton, E. A., Hayes, P. D., Varty, K., Boyle, J. R., Gaunt, M. E., Zalewski, A., & Gillard, J. H. (2009). The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. Journal of the American College of Cardiology, 53(22), 2039–2050. doi:10.1016/j.jacc.2009.03.018.

    Article  PubMed  CAS  Google Scholar 

  52. Jaffer, F. A., Nahrendorf, M., Sosnovik, D., Kelly, K. A., Aikawa, E., & Weissleder, R. (2006). Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials. Molecular Imaging, 5(2), 85–92.

    PubMed  Google Scholar 

  53. Mani, V., Briley-Saebo, K. C., Itskovich, V. V., Samber, D. D., & Fayad, Z. A. (2006). Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 55(1), 126–135. doi:10.1002/mrm.20739.

    Article  CAS  Google Scholar 

  54. Kooi, M. E., Cappendijk, V. C., Cleutjens, K. B., Kessels, A. G., Kitslaar, P. J., Borgers, M., Frederik, P. M., Daemen, M. J., & van Engelshoven, J. M. (2003). Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation, 107(19), 2453–2458. doi:10.1161/01.CIR.0000068315.98705.CC.

    Article  PubMed  CAS  Google Scholar 

  55. Folco, E. J., Sheikine, Y., Rocha, V. Z., Christen, T., Shvartz, E., Sukhova, G. K., Di Carli, M. F., & Libby, P. (2011). Hypoxia but not inflammation augments glucose uptake in human macrophages: implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. Journal of the American College of Cardiology, 58(6), 603–614. doi:10.1016/j.jacc.2011.03.044.

    Article  PubMed  CAS  Google Scholar 

  56. Silvera, S. S., Aidi, H. E., Rudd, J. H., Mani, V., Yang, L., Farkouh, M., Fuster, V., & Fayad, Z. A. (2009). Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries. Atherosclerosis, 207(1), 139–143. doi:10.1016/j.atherosclerosis.2009.04.023.

    Article  PubMed  CAS  Google Scholar 

  57. Rudd, J. H., Warburton, E. A., Fryer, T. D., Jones, H. A., Clark, J. C., Antoun, N., Johnstrom, P., Davenport, A. P., Kirkpatrick, P. J., Arch, B. N., Pickard, J. D., & Weissberg, P. L. (2002). Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation, 105(23), 2708–2711.

    Article  PubMed  CAS  Google Scholar 

  58. Ogawa, M., Ishino, S., Mukai, T., Asano, D., Teramoto, N., Watabe, H., Kudomi, N., Shiomi, M., Magata, Y., Iida, H., & Saji, H. (2004). (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 45(7), 1245–1250.

    CAS  Google Scholar 

  59. Rominger, A., Saam, T., Wolpers, S., Cyran, C. C., Schmidt, M., Foerster, S., Nikolaou, K., Reiser, M. F., Bartenstein, P., & Hacker, M. (2009). 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 50(10), 1611–1620. doi:10.2967/jnumed.109.065151.

    Google Scholar 

  60. Wasselius, J., Larsson, S., Sundin, A., & Jacobsson, H. (2009). Assessment of inactive, active and mixed atherosclerotic plaques by 18F-FDG-PET; an age group-based correlation with cardiovascular risk factors. The International Journal of Cardiovascular Imaging, 25(2), 133–140. doi:10.1007/s10554-008-9366-5.

    Article  PubMed  Google Scholar 

  61. Tahara, N., Kai, H., Ishibashi, M., Nakaura, H., Kaida, H., Baba, K., Hayabuchi, N., & Imaizumi, T. (2006). Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. Journal of the American College of Cardiology, 48(9), 1825–1831. doi:10.1016/j.jacc.2006.03.069.

    Article  PubMed  CAS  Google Scholar 

  62. Pugliese, F., Gaemperli, O., Kinderlerer, A. R., Lamare, F., Shalhoub, J., Davies, A. H., Rimoldi, O. E., Mason, J. C., & Camici, P. G. (2010). Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. Journal of the American College of Cardiology, 56(8), 653–661. doi:10.1016/j.jacc.2010.02.063.

    Article  PubMed  Google Scholar 

  63. Gaemperli, O., Shalhoub, J., Owen, D. R., Lamare, F., Johansson, S., Fouladi, N., Davies, A. H., Rimoldi, O. E., & Camici, P. G. (2012). Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. European Heart Journal, 33(15), 1902–1910. doi:10.1093/eurheartj/ehr367.

    Article  PubMed  CAS  Google Scholar 

  64. Laitinen, I., Marjamaki, P., Nagren, K., Laine, V. J., Wilson, I., Leppanen, P., Yla-Herttuala, S., Roivainen, A., & Knuuti, J. (2009). Uptake of inflammatory cell marker [11C]PK11195 into mouse atherosclerotic plaques. European Journal of Nuclear Medicine and Molecular Imaging, 36(1), 73–80. doi:10.1007/s00259-008-0919-6.

    Article  PubMed  CAS  Google Scholar 

  65. Czernin, J., Satyamurthy, N., & Schiepers, C. (2010). Molecular mechanisms of bone 18F-NaF deposition. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 51(12), 1826–1829. doi:10.2967/jnumed.110.077933.

    CAS  Google Scholar 

  66. Aikawa, E., Nahrendorf, M., Figueiredo, J. L., Swirski, F. K., Shtatland, T., Kohler, R. H., Jaffer, F. A., Aikawa, M., & Weissleder, R. (2007). Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation, 116(24), 2841–2850. doi:10.1161/CIRCULATIONAHA.107.732867.

    Article  PubMed  CAS  Google Scholar 

  67. Derlin, T., Richter, U., Bannas, P., Begemann, P., Buchert, R., Mester, J., & Klutmann, S. (2010). Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 51(6), 862–865. doi:10.2967/jnumed.110.076471.

    Google Scholar 

  68. Derlin, T., Wisotzki, C., Richter, U., Apostolova, I., Bannas, P., Weber, C., Mester, J., & Klutmann, S. (2011). In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: correlation with atherogenic risk factors. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 52(3), 362–368. doi:10.2967/jnumed.110.081208.

    Google Scholar 

  69. Rogers, I. S., Nasir, K., Figueroa, A. L., Cury, R. C., Hoffmann, U., Vermylen, D. A., Brady, T. J., & Tawakol, A. (2010). Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC. Cardiovascular Imaging, 3(4), 388–397. doi:10.1016/j.jcmg.2010.01.004.

    Article  PubMed  Google Scholar 

  70. Wykrzykowska, J., Lehman, S., Williams, G., Parker, J. A., Palmer, M. R., Varkey, S., Kolodny, G., & Laham, R. (2009). Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 50(4), 563–568. doi:10.2967/jnumed.108.055616.

    Google Scholar 

  71. Cheng, V. Y., Slomka, P. J., Le Meunier, L., Tamarappoo, B. K., Nakazato, R., Dey, D., & Berman, D. S. (2012). Coronary arterial 18F-FDG uptake by fusion of PET and coronary CT angiography at sites of percutaneous stenting for acute myocardial infarction and stable coronary artery disease. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 53(4), 575–583. doi:10.2967/jnumed.111.097550.

    CAS  Google Scholar 

  72. Saam, T., Rominger, A., Wolpers, S., Nikolaou, K., Rist, C., Greif, M., Cumming, P., Becker, A., Foerster, S., Reiser, M. F., Bartenstein, P., & Hacker, M. (2010). Association of inflammation of the left anterior descending coronary artery with cardiovascular risk factors, plaque burden and pericardial fat volume: a PET/CT study. European Journal of Nuclear Medicine and Molecular Imaging, 37(6), 1203–1212. doi:10.1007/s00259-010-1432-2.

    Article  PubMed  Google Scholar 

  73. Dweck, M. R., Chow, M. W., Joshi, N. V., Williams, M. C., Jones, C., Fletcher, A. M., Richardson, H., White, A., McKillop, G., van Beek, E. J., Boon, N. A., Rudd, J. H., & Newby, D. E. (2012). Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. Journal of the American College of Cardiology, 59(17), 1539–1548. doi:10.1016/j.jacc.2011.12.037.

    Article  PubMed  CAS  Google Scholar 

  74. Fleg, J. L., Stone, G. W., Fayad, Z. A., Granada, J. F., Hatsukami, T. S., Kolodgie, F. D., Ohayon, J., Pettigrew, R., Sabatine, M. S., Tearney, G. J., Waxman, S., Domanski, M. J., Srinivas, P. R., & Narula, J. (2012). Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC. Cardiovascular Imaging, 5(9), 941–955. doi:10.1016/j.jcmg.2012.07.007.

    Article  PubMed  Google Scholar 

  75. Saraste, A., Laitinen, I., Weidl, E., Wildgruber, M., Weber, A. W., Nekolla, S. G., Holzlwimmer, G., Esposito, I., Walch, A., Leppanen, P., Lisinen, I., Luppa, P. B., Yla-Herttuala, S., Wester, H. J., Knuuti, J., & Schwaiger, M. (2012). Diet intervention reduces uptake of alphavbeta3 integrin-targeted PET tracer 18F-galacto-RGD in mouse atherosclerotic plaques. Journal of Nuclear Cardiology: Official Publication of the American Society of Nuclear Cardiology, 19(4), 775–784. doi:10.1007/s12350-012-9554-5.

    Article  Google Scholar 

  76. Vinegoni, C., Botnaru, I., Aikawa, E., Calfon, M. A., Iwamoto, Y., Folco, E. J., Ntziachristos, V., Weissleder, R., Libby, P., & Jaffer, F. A. (2011). Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Science Translational Medicine, 3(84), 84ra45. doi:10.1126/scitranslmed.3001577.

    Article  PubMed  Google Scholar 

  77. Jaffer, F. A., Vinegoni, C., John, M. C., Aikawa, E., Gold, H. K., Finn, A. V., Ntziachristos, V., Libby, P., & Weissleder, R. (2008). Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation, 118(18), 1802–1809. doi:10.1161/CIRCULATIONAHA.108.785881.

    Article  PubMed  Google Scholar 

  78. Jaffer, F. A., Libby, P., & Weissleder, R. (2009). Optical and multimodality molecular imaging: insights into atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(7), 1017–1024. doi:10.1161/ATVBAHA.108.165530.

    Article  PubMed  CAS  Google Scholar 

  79. Calfon, M. A., Vinegoni, C., Ntziachristos, V., & Jaffer, F. A. (2010). Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques. Journal of Biomedical Optics, 15(1), 011107. doi:10.1117/1.3280282.

    Article  PubMed  Google Scholar 

  80. Yoo, H., Kim, J. W., Shishkov, M., Namati, E., Morse, T., Shubochkin, R., McCarthy, J. R., Ntziachristos, V., Bouma, B. E., Jaffer, F. A., & Tearney, G. J. (2011). Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nature Medicine, 17(12), 1680–1684. doi:10.1038/nm.2555.

    Article  PubMed  CAS  Google Scholar 

  81. Jaffer, F. A., Calfon, M. A., Rosenthal, A., Mallas, G., Razansky, R. N., Mauskapf, A., Weissleder, R., Libby, P., & Ntziachristos, V. (2011). Two-dimensional intravascular near-infrared fluorescence molecular imaging of inflammation in atherosclerosis and stent-induced vascular injury. Journal of the American College of Cardiology, 57(25), 2516–2526. doi:10.1016/j.jacc.2011.02.036.

    Article  PubMed  Google Scholar 

  82. Dzurinko, V. L., Gurwood, A. S., & Price, J. R. (2004). Intravenous and indocyanine green angiography. Optometry, 75(12), 743–755.

    Article  PubMed  Google Scholar 

  83. Nutt, R., Vento, L. J., & Ridinger, M. H. (2007). In vivo molecular imaging biomarkers: clinical pharmacology’s new “PET”? Clinical Pharmacology and Therapeutics, 81(6), 792–795. doi:10.1038/sj.clpt.6100213.

    Article  PubMed  CAS  Google Scholar 

  84. van Dam, G. M., Themelis, G., Crane, L. M., Harlaar, N. J., Pleijhuis, R. G., Kelder, W., Sarantopoulos, A., de Jong, J. S., Arts, H. J., van der Zee, A. G., Bart, J., Low, P. S., & Ntziachristos, V. (2011). Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nature Medicine, 17(10), 1315–1319. doi:10.1038/nm.2472.

    Article  PubMed  Google Scholar 

Download references

Sources of funding

Rubicon grant of the Royal Netherlands Academy of Arts and Sciences (825.12.013), NIH R01 HL108229, MGH SPARK Award, MGH ECOR Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farouc A. Jaffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verjans, J.W., Jaffer, F.A. Biological Imaging of Atherosclerosis: Moving Beyond Anatomy. J. of Cardiovasc. Trans. Res. 6, 681–694 (2013). https://doi.org/10.1007/s12265-013-9474-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9474-z

Keywords

Navigation