Skip to main content
Log in

The Clinical Anatomy and Pathology of the Human Arterial Valves: Implications for Repair or Replacement

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

A thorough understanding of valvar anatomy is essential for design engineers and clinicians in the development and/or employment of improved technologies or therapies for treating valvar pathologies. There are two arterial valves in the human heart—pulmonary and aortic valves. Both are complex structures whose normal anatomical components can vary greatly between individuals. We discuss the anatomy, pathology, and challenges relating to transcatheter and surgical repair/replacement of the arterial valves in a translational manner. The high prevalence of aortic valvar pathologies in the burgeoning elderly population, coupled with poor clinical outcomes for patients who go untreated, has resulted in prolific spending in the research and development of more effective and less traumatic therapies. The accelerated development of therapies for treating arterial valves has been guided by anatomical information gathered from high-resolution imaging technologies, which have focused attention on the need for complete understanding of arterial valvar clinical anatomies. This article is part of a JCTR special issue on Cardiac Anatomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sievers, H. H., et al. (2012). The everyday used nomenclature of the aortic root components: the tower of Babel? European Journal of Cardio-Thoracic Surgery, 41(3), 478–82.

    Article  PubMed  Google Scholar 

  2. Klass, O., et al. (2011). Quantification of aortic valve area at 256-slice computed tomography: Comparison with transesophageal echocardiography and cardiac catheterization in subjects with high-grade aortic valve stenosis prior to percutaneous valve replacement. European Journal of Radiology, 80(1), 151–157.

    Article  PubMed  Google Scholar 

  3. Haensig, M., et al. (2012). Aortic valve calcium scoring is a predictor of significant paravalvular aortic insufficiency in transapical-aortic valve implantation. European Journal of Cardio-Thoracic Surgery, 41(6), 1234–40. discussion 1240–1.

    Article  PubMed  Google Scholar 

  4. Kempfert, J., et al. (2012). Aortic annulus sizing: echocardiographic vs. computed tomography derived measurements in comparison with direct surgical sizing. European. Journal of Cardiothoracic Surgery, 42(4), 627–633.

    Article  Google Scholar 

  5. Delgado, V., et al. (2012). Transcatheter aortic valve implantation: implications of multimodality imaging in patient selection, procedural guidance, and outcomes. Heart, 98(9), 743–54.

    Article  PubMed  Google Scholar 

  6. Swanson, W. M., & Clark, R. E. (1974). Dimensions and geometric relationships of the human aortic value as a function of pressure. Circulation Research, 35(6), 871–882.

    Article  PubMed  CAS  Google Scholar 

  7. Thubrikar, M., et al. (1981). The design of the normal aortic valve. American Journal of Physiology, 241(6), H795–801.

    PubMed  CAS  Google Scholar 

  8. Anderson, R. H., et al. (1991). The myth of the aortic annulus: the anatomy of the subaortic outflow tract. The Annals of Thoracic Surgery, 52(3), 640–646.

    Article  PubMed  CAS  Google Scholar 

  9. Butany, J., et al. (2005). Morphological and clinical findings in 247 surgically excised native aortic valves. Canadian Journal of Cardiology, 21(9), 747–55.

    PubMed  Google Scholar 

  10. Wilcox, B. R., Cook, A. C., & Anderson, R. H. (2004). Surgical anatomy of the heart. 3rd edn (p. 319). Cambridge: Cambridge University Press.

    Google Scholar 

  11. Anderson, R. H. (2007). The surgical anatomy of the aortic root. Multimedia Manual Cardio-Thoracic Surgery, 2007(219), 2527.

    Google Scholar 

  12. Piazza, N., et al. (2008). Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve. Circulation Cardiovascular Interventions, 1(1), 74–81.

    Article  PubMed  Google Scholar 

  13. Ho, S. Y. (2009). Structure and anatomy of the aortic root. European Journal of Echocardiography, 10(1), i3–10.

    Article  PubMed  Google Scholar 

  14. Anderson, R.H., et al. (2012) Standardized terms and positions for description of cardiac anatomy Journal of Cardiovascular Translational Research. (in press)

  15. Bateman, M.G., et al. (2012) The clinical anatomy and pathology of the human atrioventricular valves: implications for repair or replacement. Journal of Cardiovascular Translational Research. doi:10.1007/s12265-012-9437-9.

  16. The atlas of human cardiac anatomy. (2012) Available from: www.vhlab.umn.edu/atlas. Accessed 20 August 2012.

  17. Angelini, A., et al. (1988). A histological study of the atrioventricular junction in hearts with normal and prolapsed leaflets of the mitral valve. British Heart Journal, 59(6), 712–6.

    Article  PubMed  CAS  Google Scholar 

  18. Messer, S., et al. (2012). Histologic analysis of the right atrioventricular junction in the adult human heart. The Journal of Heart Valve Disease, 21(3), 368–73.

    PubMed  Google Scholar 

  19. Tops, L. F., et al. (2008). Noninvasive evaluation of the aortic root with multislice computed tomography implications for transcatheter aortic valve replacement. JACC. Cardiovascular Imaging, 1(3), 321–30.

    Article  PubMed  Google Scholar 

  20. Schoenhagen, P., & Hill, A. (2009). Transcatheter aortic valve implantation and potential role of 3D imaging. Expert Review of Medical Devices, 6(4), 411–21.

    Article  PubMed  Google Scholar 

  21. Boone, J. M., et al. (2012). Radiation exposure from CT scans: how to close our knowledge gaps, monitor and safeguard exposure—proceedings and recommendations of the Radiation Dose Summit, Sponsored by NIBIB, February 24–25, 2011. Radiology., 265(2), 544–554.

    Article  PubMed  Google Scholar 

  22. Ewe, S. H., et al. (2011). Outcomes after transcatheter aortic valve implantation: transfemoral versus transapical approach. The Annals of Thoracic Surgery, 92(4), 1244–51.

    Article  PubMed  Google Scholar 

  23. Wuest, W., et al. (2012). Dual source multidetector CT-angiography before transcatheter aortic valve implantation (TAVI) using a high-pitch spiral acquisition mode. European Radiology, 22(1), 51–8.

    Article  PubMed  CAS  Google Scholar 

  24. Pontone, G., et al. (2011). Feasibility and accuracy of a comprehensive multidetector computed tomography acquisition for patients referred for balloon-expandable transcatheter aortic valve implantation. American Heart Journal, 161(6), 1106–13.

    Article  PubMed  Google Scholar 

  25. Leipsic, J., et al. (2011). Multidetector computed tomography in transcatheter aortic valve implantation. JACC. Cardiovascular Imaging, 4(4), 416–29.

    Article  PubMed  Google Scholar 

  26. Delgado, V., et al. (2010). Transcatheter aortic valve implantation: role of multi-detector row computed tomography to evaluate prosthesis positioning and deployment in relation to valve function. European Heart Journal, 31(9), 1114–1123.

    Article  PubMed  Google Scholar 

  27. Quail, M. A., et al. (2012). Use of cardiovascular magnetic resonance imaging for TAVR assessment in patients with bioprosthetic aortic valves: comparison with computed tomography. European Journal of Radiology., 18(12), 3912–3817.

    Article  Google Scholar 

  28. Ng, A. C., et al. (2010). Comparison of aortic root dimensions and geometries before and after transcatheter aortic valve implantation by 2- and 3-dimensional transesophageal echocardiography and multislice computed tomography. Circulation. Cardiovascular Imaging, 3(1), 94–102.

    Article  PubMed  Google Scholar 

  29. Messika-Zeitoun, D., et al. (2010). Multimodal assessment of the aortic annulus diameter: implications for transcatheter aortic valve implantation. Journal of the American College of Cardiology, 55(3), 186–194.

    Article  PubMed  Google Scholar 

  30. Schoenhagen, P., et al. (2009). Three-dimensional imaging of the aortic valve and aortic root with computed tomography: new standards in an era of transcatheter valve repair/implantation. European Heart Journal, 30(17), 2079–86.

    Article  PubMed  Google Scholar 

  31. Altiok, E., et al. (2011). Comparison of two-dimensional and three-dimensional imaging techniques for measurement of aortic annulus diameters before transcatheter aortic valve implantation. Heart., 97(19), 1578–1584.

    Article  PubMed  Google Scholar 

  32. Tsang, W., et al. (2012). Accuracy of aortic annular measurements obtained from three-dimensional echocardiography, CT and MRI: human in vitro and in vivo studies. Heart, 98(15), 1146–52.

    Article  PubMed  Google Scholar 

  33. Sutton, J. P., 3rd, Ho, S. Y., & Anderson, R. H. (1995). The forgotten interleaflet triangles: a review of the surgical anatomy of the aortic valve. The Annals of Thoracic Surgery, 59(2), 419–27.

    Article  PubMed  Google Scholar 

  34. Vollebergh, F. E., & Becker, A. E. (1977). Minor congenital variations of cusp size in tricuspid aortic valves. Possible link with isolated aortic stenosis. British Heart Journal, 39(9), 1006–11.

    Article  PubMed  CAS  Google Scholar 

  35. Brewer, R., et al. (1976). The dynamic aortic root. Its role in aortic valve function. The Journal of Thoracic and Cardiovascular Surgery, 72(3), 413.

    PubMed  CAS  Google Scholar 

  36. Hamdan, A., et al. (2012). Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. Journal of the American College of Cardiology, 59(2), 119–27.

    Article  PubMed  Google Scholar 

  37. de Heer, L., et al. (2011). Aortic root dimension changes during systole and diastole: evaluation with ECG-gated multidetector row computed tomography. The International Journal of Cardiovascular Imaging (formerly Cardiac Imaging), 27(8), 1195–1204.

    Article  Google Scholar 

  38. Akhtar, M., et al. (2009). Aortic root morphology in patients undergoing percutaneous aortic valve replacement: evidence of aortic root remodeling. The Journal of Thoracic and Cardiovascular Surgery, 137(4), 950–6.

    Article  PubMed  Google Scholar 

  39. Maselli, D., et al. (2007). Sinotubular junction size affects aortic root geometry and aortic valve function in the aortic valve reimplantation procedure: an in vitro study using the Valsalva graft. The Annals of Thoracic Surgery, 84(4), 1214–8.

    Article  PubMed  Google Scholar 

  40. Wenink, A. C. G., Oppenheimer-Dekker, A., & Moulaert, A. J. (1981). The ventricular septum of the heart. Boerhaave series for postgraduate medical education (p. 238). The Hague: Leiden University Press. x.

    Book  Google Scholar 

  41. Reid, K. (1970). The anatomy of the sinus of Valsalva. Thorax, 25(1), 79–85.

    Article  PubMed  CAS  Google Scholar 

  42. Turner, K., & Navaratnam, V. (1996). The positions of coronary arterial ostia. Clinical Anatomy, 9(6), 376–80.

    Article  PubMed  CAS  Google Scholar 

  43. Muriago, M., et al. (1997). Location of the coronary arterial orifices in the normal heart. Clinical Anatomy, 10(5), 297–302.

    Article  PubMed  CAS  Google Scholar 

  44. Jo, Y., et al. (2011). Sudden cardiac arrest: associated with anomalous origin of the right coronary artery from the left main coronary artery. Texas Heart Institute Journal, 38(5), 539–43.

    PubMed  Google Scholar 

  45. Roynard, J. L., et al. (1994). Anomalous course of the left anterior descending coronary artery between the aorta and pulmonary trunk: a rare cause of myocardial ischaemia at rest. British Heart Journal, 72(4), 397–9.

    Article  PubMed  CAS  Google Scholar 

  46. Tawara, S. (1906). Das Reizleitungenssystem des Säugetierherzens: eine anatomisch-histologische Studie über das Atrioventikularbündel und die Purkinjeschen Fäden (p. 200). Jena: Fischer. ix.

  47. Gross, L., & Kugel, M. A. (1931). Topographic anatomy and histology of the valves in the human heart. American Journal of Pathology, 7(5), 445–474. 7.

    PubMed  CAS  Google Scholar 

  48. Misfeld, M., & Sievers, H. H. (2007). Heart valve macro- and microstructure. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1484), 1421–36.

    Article  PubMed  Google Scholar 

  49. Syedain, Z. H., & Tranquillo, R. T. (2009). Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials, 30(25), 4078–84.

    Article  PubMed  CAS  Google Scholar 

  50. Writing Group, M, et al. (2010). Heart disease and stroke statistics–2010 update: a report from the American Heart Association. Circulation, 121(7), e46–e215.

    Article  Google Scholar 

  51. Bonow, R. O., et al. (2006). ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease) developed in collaboration with the Society of Cardiovascular Anesthesiologists endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Journal of the American College of Cardiology, 48(3), e1–148.

    Article  PubMed  Google Scholar 

  52. Vahanian, A., et al. (2007). Guidelines on the management of valvular heart disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. European Heart Journal, 28(2), 230–68.

    Article  PubMed  Google Scholar 

  53. Roberts, W. C., & Ko, J. M. (2005). Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation, 111(7), 920–5.

    Article  PubMed  Google Scholar 

  54. Schaefer, B. M., et al. (2007). Usefulness of bicuspid aortic valve phenotype to predict elastic properties of the ascending aorta. The American Journal of Cardiology, 99(5), 686–90.

    Article  PubMed  Google Scholar 

  55. Nistri, S., et al. (1999). Aortic root dilatation in young men with normally functioning bicuspid aortic valves. Heart, 82(1), 19–22.

    PubMed  CAS  Google Scholar 

  56. Baumgartner, H., et al. (2009). Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Journal of the American Society of Echocardiography, 22(1), 1–23.

    Article  PubMed  Google Scholar 

  57. Skjaerpe, T., Hegrenaes, L., & Hatle, L. (1985). Noninvasive estimation of valve area in patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography. Circulation, 72(4), 810–8.

    Article  PubMed  CAS  Google Scholar 

  58. Busch, S., et al. (2008). Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. European Radiology, 18(3), 570–575.

    Article  PubMed  CAS  Google Scholar 

  59. Garcia, J., et al. (2008). In vivo velocity and flow errors quantification by phase-contrast magnetic resonance imaging. Conference Proceedings IEEE Engineering in Medicine & Biology Society, 2008, 1377–80.

    CAS  Google Scholar 

  60. Shanks, M., et al. (2010). Quantitative assessment of mitral regurgitation: comparison between three-dimensional transesophageal echocardiography and magnetic resonance imaging. Circulation. Cardiovascular Imaging, 3(6), 694–700.

    Article  PubMed  Google Scholar 

  61. Mizia-Stec, K., et al. (2011). Preoperative quantification of aortic valve stenosis: comparison of 64-slice computed tomography with transesophageal and transthoracic echocardiography and size of implanted prosthesis. The International Journal of Cardiovascular Imaging (formerly Cardiac Imaging), 28(2), 343–352.

    Article  Google Scholar 

  62. Latsios, G., et al. (2010). “Device landing zone” calcification, assessed by MSCT, as a predictive factor for pacemaker implantation after TAVI. Catheterization and Cardiovascular Interventions, 76(3), 431–439.

    Article  PubMed  Google Scholar 

  63. Koos, R., et al. (2010). Association of aortic valve calcification severity with the degree of aortic regurgitation after transcatheter aortic valve implantation. International Journal of Cardiology., 150(2), 142–145.

    Article  PubMed  Google Scholar 

  64. Chitsaz, S., et al. (2012). Correlation of calcification on excised aortic valves by micro-computed tomography with severity of aortic stenosis. The Journal of Heart Valve Disease, 21(3), 320.

    PubMed  Google Scholar 

  65. Bennett, C. J., Maleszewski, J. J., & Araoz, P. A. (2012). CT and MR imaging of the aortic valve: radiologic-pathologic correlation. Radiographics, 32(5), 1399–420.

    Article  PubMed  Google Scholar 

  66. Hague, C. J., & Leipsic, J. (2012). Everything is better in 3D: why transcatheter aortic valve replacement should be guided by multidetector computed tomography. Future Cardiology, 8(4), 485–487.

    Article  PubMed  CAS  Google Scholar 

  67. Khawaja, M.Z., et al. (2012) Standalone balloon aortic valvuloplasty: indications and outcomes from the UK in the transcatheter valve era. Catheterization and Cardiovascular Interventions. doi: 10.1002/ccd.24534

  68. Don, C., et al. (2012). Patients with small left ventricular size undergoing balloon aortic valvuloplasty have worse intraprocedural outcomes. Catheterization and Cardiovascular Interventions., 80(6), 946–954.

    Article  PubMed  Google Scholar 

  69. Don, C. W., et al. (2010). Comparison of procedural and in-hospital outcomes of percutaneous balloon aortic valvuloplasty in patients >80 years versus patients < or =80 years. The American Journal of Cardiology, 105(12), 1815–20.

    Article  PubMed  Google Scholar 

  70. Rankin, J. S., & Gaca, J. G. (2011). Techniques of aortic valve repair. Innovations (Phila), 6(6), 348–54.

    Article  Google Scholar 

  71. Deo, S. V., et al. (2012). Late outcomes for surgical repair of supravalvar aortic stenosis. The Annals of Thoracic Surgery, 94(3), 854–9.

    Article  PubMed  Google Scholar 

  72. Wagner, I. M., et al. (2007). Influence of completely supra-annular placement of bioprostheses on exercise hemodynamics in patients with a small aortic annulus. The Journal of Thoracic and Cardiovascular Surgery, 133(5), 1234–41.

    Article  PubMed  Google Scholar 

  73. van Geldorp, M. W., et al. (2009). Patient outcome after aortic valve replacement with a mechanical or biological prosthesis: weighing lifetime anticoagulant-related event risk against reoperation risk. The Journal of Thoracic and Cardiovascular Surgery, 137(4), 881–6. 886e1-5.

    Article  PubMed  Google Scholar 

  74. Silberman, S., et al. (2008). Aortic valve replacement: choice between mechanical valves and bioprostheses. Journal of Cardiac Surgery, 23(4), 299–306.

    Article  PubMed  Google Scholar 

  75. Smith, C. R., et al. (2010). Transcatheter versus surgical aortic-valve replacement in high-risk patients. The New England Journal of Medicine., 364(23), 2187–2198.

    Article  Google Scholar 

  76. Leon, M. B., et al. (2010). Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. The New England Journal of Medicine, 363(17), 1597–607.

    Article  PubMed  CAS  Google Scholar 

  77. Cribier, A., et al. (2002). Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation, 106(24), 3006–8.

    Article  PubMed  Google Scholar 

  78. Bleiziffer, S., et al. (2009). Results of percutaneous and transapical transcatheter aortic valve implantation performed by a surgical team. European Journal of Cardio-Thoracic Surgery, 35(4), 615–20. discussion 620–1.

    Article  PubMed  Google Scholar 

  79. Bonhoeffer, P., et al. (2000). Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet, 356(9239), 1403–5.

    Article  PubMed  CAS  Google Scholar 

  80. Buellesfeld, L., & Windecker, S. (2011). Update on transcatheter aortic valve implantation registries and studies. Minerva Cardioangiologica, 59(5), 419–30.

    PubMed  CAS  Google Scholar 

  81. Bourantas, C. V., et al. (2012). Transcatheter aortic valve implantation: new developments and upcoming clinical trials. EuroIntervention, 8(5), 617–627.

    Article  PubMed  Google Scholar 

  82. Buz, S., et al. (2011). Trans-apical aortic valve implantation in patients with severe calcification of the ascending aorta. European Journal of Cardiothoracic Surgery., 40(2), 463–468.

    PubMed  Google Scholar 

  83. Aktug, Ö., et al. (2012). Incidence and predictors of left bundle branch block after transcatheter aortic valve implantation. International Journal of Cardiology., 160(1), 26–30.

    Article  PubMed  Google Scholar 

  84. Vasa-Nicotera, M., et al. (2012). Impact of paravalvular leakage on outcome in patients after transcatheter aortic valve implantation. JACC. Cardiovascular Interventions, 5(8), 858–65.

    Article  PubMed  Google Scholar 

  85. Anderson, R. H., Becker, A. E., & Allwork, S. P. (1980). Cardiac anatomy: an integrated text and colour atlas. Churchill Livingstone: Gower Medical. xi, [239].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Bateman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bateman, M.G., Hill, A.J., Quill, J.L. et al. The Clinical Anatomy and Pathology of the Human Arterial Valves: Implications for Repair or Replacement. J. of Cardiovasc. Trans. Res. 6, 166–175 (2013). https://doi.org/10.1007/s12265-012-9438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9438-8

Keywords

Navigation