Skip to main content

Advertisement

Log in

What’s New in Regenerative Medicine: Split up of the Mesenchymal Stem Cell Family Promises New Hope for Cardiovascular Repair

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Coronary artery disease (CAD) is exceedingly prevalent and requires care optimization. Regenerative medicine holds promise to improve the clinical outcome of CAD patients. Current approach consists in subsidizing the infarcted heart with boluses of autologous stem cells from the bone marrow. Moreover, mesenchymal stem cells (MSCs) are in the focus of intense research owing to an apparent superiority in plasticity and regenerative capacity compared with hematopoietic stem cells. In this review, we report recent findings indicating the presence, within the heterogeneous MSC population, of perivascular stem cells expressing typical pericyte markers. Moreover, we focus on recent research showing the presence of similar cells in the adventitia of large vessels. These discoveries were fundamental to shape a roadmap toward clinical application in patients with myocardial ischemia. Adventitial stem cells are ideal candidates for promotion of cardiac repair owing to their ease of accessibility and expandability and potent vasculogenic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aMI:

Acute myocardial infarction

ATMP:

Advanced therapy medicinal product

ANP:

Atrial natriuretic peptide

BM:

Bone marrow

BMP-2:

Bone morphogenetic protein 2

CO:

Cardiac output

CPCs:

Cardiac progenitor cells

CSCs:

Cardiac stem cells

cTnT:

Cardiac troponin

CABG:

Coronary artery bypass graft

CAD:

Coronary artery disease

CLI:

Critical limb ischemia

FA-MSCs:

Foetal aorta-derived mesenchymal stem cells

EGM2:

Endothelial growth medium

EMEA:

European Medicine Agency

HF:

Heart failure

HGF:

Hepatocyte growth factor

hMSCs:

Human MSCs

HTA:

Human Tissue Authority

IGF-1:

Insulin-like growth factor 1

sLex:

Lewisx

LVEF:

Left ventricular ejection fraction

MSCs:

Mesenchymal stem cells

MeCP2:

Methyl-CpG-binding protein 2

miR-132:

microRNA-132

(β-MHC):

β-myosin heavy chain

MHRA:

Medicine and Healthcare products Regulatory Agency

NHSBT:

National Health System Blood and Transplant

Dll4:

Notch delta-like 4 ligand

PB:

Peripheral blood

PDGF-BB:

Platelet-derived growth factor-BB

PODXL:

Podocalyxin-like protein 1

PSGL-1:

P-selectin glycoprotein ligand 1

RasGAP:

Ras-GTPase activating protein

SOP:

Standard operating protocol

SDF-1:

Stromal cell-derived factor-1

TGFβ1 :

Transforming growth factor β1

VEGF:

Vascular endothelial growth factor

vWF:

von Willerbrand Factor

References

  1. Strauer, B. E., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–8.

    Article  PubMed  Google Scholar 

  2. Ieda, M., and Fukuda, K. (2012). Cardiomyocyte generation using stem cells and directly reprogrammed cells. Front Biosci (Schol Ed), 4, p. 1413–23.

  3. Assmus, B., et al. (2002). Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation, 106(24), 3009–17.

    Article  PubMed  Google Scholar 

  4. Psaltis, P. J., et al. (2008). Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells, 26(9), 2201–10.

    Article  PubMed  Google Scholar 

  5. Martin-Rendon, E., et al. (2008). Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. European Heart Journal, 29(15), 1807–18.

    Article  PubMed  CAS  Google Scholar 

  6. Jujo, K., Ii, M., & Losordo, D. W. (2008). Endothelial progenitor cells in neovascularization of infarcted myocardium. Journal of Molecular and Cellular Cardiology, 45(4), 530–44.

    Article  PubMed  CAS  Google Scholar 

  7. Oikawa, A., et al. (2010). Diabetes mellitus induces bone marrow microangiopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(3), 498–508.

    Article  PubMed  CAS  Google Scholar 

  8. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: current understanding and clinical status. Stem Cells, 28(3), 585–96.

    PubMed  CAS  Google Scholar 

  9. Gnecchi, M., Danieli, P., & Cervio E. (2012). Mesenchymal stem cell therapy for heart disease. Vascul Pharmacol, 57(1), 48–55.

    Google Scholar 

  10. Dupont, S., et al. (2011). Role of YAP/TAZ in mechanotransduction. Nature, 474(7350), 179–83.

    Article  PubMed  CAS  Google Scholar 

  11. Shi, Y., et al. (2012). How mesenchymal stem cells interact with tissue immune responses. Trends in Immunology, 33(3), 136–43.

    Article  PubMed  CAS  Google Scholar 

  12. Bartunek, J., et al. (2008). Mesenchymal stem cells and cardiac repair: principles and practice. Journal of Cardiovascular Translational Research, 1(2), 115–9.

    Article  PubMed  Google Scholar 

  13. Mansilla, E., et al. (2006). Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplantation Proceedings, 38(3), 967–9.

    Article  PubMed  CAS  Google Scholar 

  14. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews Immunology, 8(9), 726–36.

    Article  PubMed  CAS  Google Scholar 

  15. Ceradini, D. J., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Medicine, 10(8), 858–64.

    Article  PubMed  CAS  Google Scholar 

  16. Wynn, R. F., et al. (2004). A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104(9), 2643–5.

    Article  PubMed  CAS  Google Scholar 

  17. Sarkar, D., et al. (2008). Chemical engineering of mesenchymal stem cells to induce a cell rolling response. Bioconjugate Chemistry, 19(11), 2105–9.

    Article  PubMed  CAS  Google Scholar 

  18. Sarkar, D., et al. (2010). Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials, 31(19), 5266–74.

    Article  PubMed  CAS  Google Scholar 

  19. Toma, C., et al. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–8.

    Article  PubMed  Google Scholar 

  20. Huang, X. P., et al. (2010). Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair. Circulation, 122(23), 2419–29.

    Article  PubMed  CAS  Google Scholar 

  21. Quevedo, H. C., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 14022–7.

    Article  PubMed  CAS  Google Scholar 

  22. He, Z., et al. (2011). Transduction of Wnt11 promotes mesenchymal stem cell transdifferentiation into cardiac phenotypes. Stem Cells and Development, 20(10), 1771–8.

    Article  PubMed  CAS  Google Scholar 

  23. Armiñán, A., et al. (2009). Cardiac differentiation is driven by NKX2.5 and GATA4 nuclear translocation in tissue-specific mesenchymal stem cells. Stem Cells and Development, 18(6), 907–18.

    Article  PubMed  Google Scholar 

  24. Durocher, D., et al. (1997). The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO Journal, 16(18), 5687–96.

    Article  PubMed  CAS  Google Scholar 

  25. Chang, S. A., et al. (2008). Impact of myocardial infarct proteins and oscillating pressure on the differentiation of mesenchymal stem cells: effect of acute myocardial infarction on stem cell differentiation. Stem Cells, 26(7), 1901–12.

    Article  PubMed  CAS  Google Scholar 

  26. Pittenger, M. F., & Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95(1), 9–20.

    Article  PubMed  CAS  Google Scholar 

  27. Jeong, J. O., et al. (2011). Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circulation Research, 108(11), 1340–7.

    Article  PubMed  CAS  Google Scholar 

  28. Rose, R. A., Keating, A., & Backx, P. H. (2008). Do mesenchymal stromal cells transdifferentiate into functional cardiomyocytes? Circulation Research, 103(9), e120.

    Article  PubMed  CAS  Google Scholar 

  29. Siegel, G., et al. (2012). Bone Marrow-Derived Human Mesenchymal Stem Cells Express Cardiomyogenic Proteins But Do Not Exhibit Functional Cardiomyogenic Differentiation Potential. Stem Cells Dev. doi:10.1089/scd.2011.0626.

  30. Lai, R. C., et al. (2010). Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Research, 4(3), 214–22.

    Article  PubMed  CAS  Google Scholar 

  31. Nakanishi, C., et al. (2008). Activation of cardiac progenitor cells through paracrine effects of mesenchymal stem cells. Biochemical and Biophysical Research Communications, 374(1), 11–6.

    Article  PubMed  CAS  Google Scholar 

  32. Dellavalle, A., et al. (2007). Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nature Cell Biology, 9(3), 255–67.

    Article  PubMed  CAS  Google Scholar 

  33. Morosetti, R., et al. (2011). Mesoangioblasts of inclusion-body myositis: a twofold tool to study pathogenic mechanisms and enhance defective muscle regeneration. Acta Myol, 30(1), 24–8.

    PubMed  CAS  Google Scholar 

  34. Bosch, J., et al. (2012). Distinct Differentiation Potential of “MSC” Derived from Cord Blood and Umbilical Cord: Are Cord-Derived Cells True Mesenchymal Stromal Cells? Stem Cells Dev, 21(11), 1977–88.

    Google Scholar 

  35. Invernici, G., et al. (2008). Human fetal aorta-derived vascular progenitor cells: identification and potential application in ischemic diseases. Cytotechnology, 58(1), 43–7.

    Article  PubMed  Google Scholar 

  36. Corselli, M., et al. (2012). The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells and Development, 21(8), 1299–308.

    Article  PubMed  CAS  Google Scholar 

  37. Crisan, M., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3(3), 301–13.

    Article  PubMed  CAS  Google Scholar 

  38. Ergün, S., Tilki, D., & Klein, D. (2011). Vascular wall as a reservoir for different types of stem and progenitor cells. Antioxidants & Redox Signaling, 15(4), 981–95.

    Article  Google Scholar 

  39. Klein, D., et al. (2011). Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One, 6(5), e20540.

    Article  PubMed  CAS  Google Scholar 

  40. Campagnolo, P., et al. (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121(15), 1735–45.

    Article  PubMed  Google Scholar 

  41. Dellavalle, A., et al. (2011). Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nature Communications, 2, 499.

    Article  PubMed  CAS  Google Scholar 

  42. Galvez, B. G., et al. (2008). Cardiac mesoangioblasts are committed, self-renewable progenitors, associated with small vessels of juvenile mouse ventricle. Cell Death and Differentiation, 15(9), 1417–28.

    Article  PubMed  CAS  Google Scholar 

  43. Pasquinelli, G., et al. (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25(7), 1627–34.

    Article  PubMed  CAS  Google Scholar 

  44. Zimmerlin, L., et al. (2011). Stromal vascular progenitors in adult human adipose tissue. Cytometry. Part A, 77(1), 22–30.

    Google Scholar 

  45. Cai, X., et al. (2009). Bone marrow derived pluripotent cells are pericytes which contribute to vascularization. Stem Cell Reviews, 5(4), 437–45.

    Article  PubMed  Google Scholar 

  46. Hirschi, K. K., & D’Amore, P. A. (1996). Pericytes in the microvasculature. Cardiovascular Research, 32(4), 687–98.

    PubMed  CAS  Google Scholar 

  47. Stewart, K. S., et al. (2011). Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood, 117(2), 719–26.

    Article  PubMed  CAS  Google Scholar 

  48. Al Haj Zen, A., et al. (2010). Inhibition of delta-like-4-mediated signaling impairs reparative angiogenesis after ischemia. Circulation Research, 107(2), 283–93.

    Article  PubMed  Google Scholar 

  49. Brighton, C. T., et al. (1992). The pericyte as a possible osteoblast progenitor cell. Clinical Orthopaedics and Related Research, 275, 287–99.

    PubMed  Google Scholar 

  50. Diaz-Flores, L., et al. (1992). Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clinical Orthopaedics and Related Research, 275, 280–6.

    PubMed  Google Scholar 

  51. Richardson, R. L., Hausman, G. J., & Campion, D. R. (1982). Response of pericytes to thermal lesion in the inguinal fat pad of 10-day-old rats. Acta Anat (Basel), 114(1), 41–57.

    Article  CAS  Google Scholar 

  52. Barcelos, L. S., et al. (2009). Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circulation Research, 104(9), 1095–102.

    Article  PubMed  CAS  Google Scholar 

  53. Invernici, G., et al. (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. American Journal of Pathology, 170(6), 1879–92.

    Article  PubMed  CAS  Google Scholar 

  54. Katare, R., et al. (2011). Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation Research, 109(8), 894–906.

    Article  PubMed  CAS  Google Scholar 

  55. Fossett, E., et al. (2012). Effect of age and gender on cell proliferation and cell surface characterization of synovial fat pad derived mesenchymal stem cells. Journal of Orthopaedic Research, 30(7), 1013–8.

    Article  PubMed  Google Scholar 

  56. Stolzing, A., et al. (2008). Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mechanisms of Ageing and Development, 129(3), 163–73.

    Article  PubMed  CAS  Google Scholar 

  57. Muschler, G. F., et al. (2001). Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. Journal of Orthopaedic Research, 19(1), 117–25.

    Article  PubMed  CAS  Google Scholar 

  58. Ray, R., et al. (2008). Sex steroids and stem cell function. Molecular Medicine, 14(7–8), 493–501.

    PubMed  CAS  Google Scholar 

  59. Barile, L., et al. (2007). Endogenous cardiac stem cells. Progress in Cardiovascular Diseases, 50(1), 31–48.

    Article  PubMed  CAS  Google Scholar 

  60. Anversa, P., & Kajstura, J. (1998). Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circulation Research, 83(1), 1–14.

    Article  PubMed  CAS  Google Scholar 

  61. Urbanek, K., et al. (2006). Stem cell niches in the adult mouse heart. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9226–31.

    Article  PubMed  CAS  Google Scholar 

  62. Linke, A., et al. (2005). Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102(25), 8966–71.

    Article  PubMed  CAS  Google Scholar 

  63. Urbanek, K., et al. (2005). Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8692–7.

    Article  PubMed  CAS  Google Scholar 

  64. Makkar, R. R., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 379(9819), 895–904.

    Article  PubMed  Google Scholar 

  65. Lahteenvuo, J. E., et al. (2009). Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor-1- and neuropilin receptor-1-dependent mechanisms. Circulation, 119(6), 845–56.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Madeddu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vono, R., Spinetti, G., Gubernator, M. et al. What’s New in Regenerative Medicine: Split up of the Mesenchymal Stem Cell Family Promises New Hope for Cardiovascular Repair. J. of Cardiovasc. Trans. Res. 5, 689–699 (2012). https://doi.org/10.1007/s12265-012-9395-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9395-2

Keywords

Navigation