Skip to main content

Advertisement

Log in

Positron Emission Tomography in Acute Coronary Syndromes

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Several imaging techniques have been used to assess cardiac structure and function, to understand pathophysiology, and to guide clinical decision making in the setting of acute coronary syndromes (ACS). Over the last years, cardiac positron emission tomography (PET) has affirmed its role in this setting. Indeed, the combined quantitative assessment of myocardial metabolism and perfusion has allowed to better understand the functional status of infarcted and non-infarcted myocardium, thus improving our knowledge of myocardial response to necrosis. More recently, several studies, taking advantage of previous observations in patients with cancer, have shown that PET could also provide important information on the mechanisms of vascular instability through the early identification of activated inflammatory cells in the atherosclerotic plaque. These findings are opening the way to more effective forms of prevention of acute vascular syndromes in high-risk patients; furthermore, new more sensitive and specific tracers for the identification of vascular inflammation are under development. In this review, we describe the potential and limitations of PET in the assessment of ACS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACS:

Acute coronary syndrome

CAD:

Coronary artery disease

CFR:

Coronary flow reserve

FDG:

Fluorodeoxyglucose

FFA:

Free fatty acids

MBF:

Myocardial blood flow

PCI:

Percutaneous coronary intervention

PET:

Positron emission tomography

SPECT:

Single-photon emission tomography

STEMI:

ST-elevation acute myocardial infarction

References

  1. Van de Werf, F., Bax, J., Betriu, A., ESC Committee for Practice Guidelines (CPG), et al. (2008). Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. European Heart Journal, 29(23), 2909–2945.

    Article  PubMed  Google Scholar 

  2. Fox, K. A., Dabbous, O. H., Goldberg, R. J., et al. (2006). Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE). BMJ, 333(7578), 1091.

    Article  PubMed  Google Scholar 

  3. Galiuto, L., DeMaria, A. N., & Iliceto, S. (2000). Microvascular damage during myocardial ischemia–reperfusion: pathophysiology, clinical implications and potential therapeutic approach evaluated by myocardial contrast echocardiography. Italian Heart Journal, 1(2), 108–116.

    PubMed  CAS  Google Scholar 

  4. Ito, H., Maruyama, A., Iwakura, K., et al. (1996). Clinical implications of the no-reflow phenomenon. A predictor of complications and left ventricular remodelling in reperfused anterior wall myocardial infarction. Circulation, 93, 223–228.

    PubMed  CAS  Google Scholar 

  5. Phelps, M. E., Mazziotta, J. C., & Schelbert, H. R. (Eds.). (1986). Positron emission tomography and autoradiography: principles and applications for the brain and the heart. New York: Raven Press.

    Google Scholar 

  6. Rahmim, A., & Zaidi, H. (2008). PET versus SPECT: strengths, limitations and challenges. Nuclear Medicine Communications, 29, 193–207.

    Article  PubMed  Google Scholar 

  7. Anagnostopoulos, C., Almonacid, A., El Fakhri, G., et al. (2008). Quantitative relationship between coronary vasodilator reserve assessed by 82Rb PET imaging and coronary artery stenosis severity. European Journal of Nuclear Medicine and Molecular Imaging, 35(9), 1593–1601.

    Article  PubMed  Google Scholar 

  8. Di Carli, M. F., & Lipton, M. J. (2007). Cardiac PET and PET/CT imaging editors. New York: Springer.

    Book  Google Scholar 

  9. Stanley, W. C., Recchia, F. A., & Lopaschuk, G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews, 85(3), 1093–1129.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, M. A., Myears, D. W., & Bergmann, S. R. (1988). Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. Journal of the American College of Cardiology, 12, 1054–1063.

    Article  PubMed  CAS  Google Scholar 

  11. Brown, M. A., Myears, D. W., & Bergmann, S. R. (1989). Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. Journal of Nuclear Medicine, 30, 187–193.

    PubMed  CAS  Google Scholar 

  12. Camici, P., Ferrannini, E., & Opie, L. H. (1989). Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Progress in Cardiovascular Diseases, 32, 217–238.

    Article  PubMed  CAS  Google Scholar 

  13. Gerber, B. L., Ordoubadi, F. F., Wijns, W., et al. (2001). Positron emission tomography using (18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of (18)F-fluoro-deoxyglucose positron emission tomography for the detection of myocardial viability. European Heart Journal, 22(18), 1691–1701.

    Article  PubMed  CAS  Google Scholar 

  14. Kaufmann, P. A., & Camici, P. G. (2005). Myocardial blood flow measurement by PET: technical aspects and clinical applications. Journal of Nuclear Medicine, 46(1), 75–88.

    PubMed  Google Scholar 

  15. Camici, P. G., & Crea, F. (2007). Coronary microvascular dysfunction. The New England Journal of Medicine, 356(8), 830–840.

    Article  PubMed  CAS  Google Scholar 

  16. Beltrame, J. F., Crea, F., & Camici, P. (2009). Advances in coronary microvascular dysfunction. Heart, Lung & Circulation, 18(1), 19–27.

    Article  Google Scholar 

  17. Camici, P., Chiriatti, G., Lorenzoni, R., et al. (1991). Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. Journal of the American College of Cardiology, 17, 879–886.

    Article  PubMed  CAS  Google Scholar 

  18. Ishimori, T., Saga, T., Mamede, M., et al. (2002). Increased 18F-FDG uptake in a model of inflammation: concanavalin A-mediated lymphocyte activation. Journal of Nuclear Medicine, 43, 658–663.

    PubMed  CAS  Google Scholar 

  19. Kelloff, G. J., Hoffman, J. M., Johnson, B., et al. (2005). Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clinical Cancer Research, 11, 2785–2808.

    Article  PubMed  CAS  Google Scholar 

  20. Camici, P. G., & Rimoldi, O. E. (2003). Myocardial blood flow in patients with hibernating myocardium. Cardiovascular Research, 57, 302–311.

    Article  PubMed  CAS  Google Scholar 

  21. Bonow RO, Maurer G, Lee KL, et al. ( 2011). For the STICH Trial Investigators, Myocardial Viability and Survival in Ischemic Left Ventricular Dysfunction, The New England Journal of Medicine 364, 1617–25.

    Google Scholar 

  22. Udelson, J. E., Pearte, C. A., Kimmelstiel, C. D., et al. (2011). The Occluded Artery Trial (OAT) Viability Ancillary Study (OAT-NUC): influence of infarct zone viability on left ventricular remodeling after percutaneous coronary intervention versus optimal medical therapy alone. American Heart Journal, 161(3), 611–621.

    Article  PubMed  Google Scholar 

  23. Niccoli, G., Burzotta, F., Galiuto, L., et al. (2009). Myocardial no-reflow in humans. Journal of the American College of Cardiology, 54(4), 281–292.

    Article  PubMed  Google Scholar 

  24. Uren, N. G., Crake, T., Lefroy, D. C., et al. (1993). Delayed recovery of coronary resistive vessel function after coronary angioplasty. Journal of the American College of Cardiology, 21(3), 612–621.

    Article  PubMed  CAS  Google Scholar 

  25. Oliva, P. B. (1981). Pathophysiology of acute myocardial infarction. Annals of Internal Medicine, 94(2), 236–250.

    PubMed  CAS  Google Scholar 

  26. Nahrendorf, M., Swirski, F. K., Aikawa, E., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204(12), 3037–3047.

    Article  PubMed  CAS  Google Scholar 

  27. Godino, C., Messa, C., Gianolli, L., et al. (2008). Multifocal, persistent cardiac uptake of [18-F]-fluoro-deoxy-glucose detected by positron emission tomography in patients with acute myocardial infarction. Circulation Journal, 72(11), 1821–1828.

    Article  PubMed  Google Scholar 

  28. Ogawa, M., Ishino, S., Mukai, T., et al. (2004). 18F-FDG Accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. Journal of Nuclear Medicine, 45, 1245–1250.

    PubMed  CAS  Google Scholar 

  29. Maschauer, S., Prante, O., Hoffmann, M., et al. (2004). Characterization of 18F-FDG uptake in human endothelial cells in vitro. Journal of Nuclear Medicine, 45, 455–460.

    PubMed  CAS  Google Scholar 

  30. Paik, J. Y., Lee, K. H., Ko, B. H., et al. (2005). Nitric oxide stimulates 18F-FDG uptake in human endothelial cells through increased hexokinase activity and GLUT1 expression. Journal of Nuclear Medicine, 46, 365–370.

    PubMed  CAS  Google Scholar 

  31. Buffon, A., Biasucci, L. M., Liuzzo, G., et al. (2002). Widespread coronary inflammation in unstable angina. The New England Journal of Medicine, 347(1), 5–12.

    Article  PubMed  Google Scholar 

  32. Abbate, A., Bonanno, E., Mauriello, A., et al. (2004). Widespread myocardial inflammation and infarct-related artery patency. Circulation, 110(1), 46–50.

    Article  PubMed  Google Scholar 

  33. Lancellotti, P., Melon, P. G., de Landsheere, C. M., et al. (1998). The role of early measurement of nitrogen-13 ammonia uptake for predicting recovery after acute myocardial infarction. International Journal of Cardiac Imaging, 14, 261–267.

    Article  PubMed  CAS  Google Scholar 

  34. Hochman, J. S., Lamas, G. A., Buller, C. E., et al. (2006). Occluded artery trial Investigators coronary intervention for persistent occlusion after myocardial infarction. The New England Journal of Medicine, 355(23), 2395–2407.

    Article  PubMed  CAS  Google Scholar 

  35. Ambrose, J. A., Tannenbaum, M. A., & Alexopoulos, D. (1988). Angiographic progression of coronary artery disease and the development of myocardial infarction. Journal of the American College of Cardiology, 12(1), 56–62.

    Article  PubMed  CAS  Google Scholar 

  36. Virmani, R., Kolodgie, F. D., Burke, A. P., et al. (2000). Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1262–1275.

    Article  PubMed  CAS  Google Scholar 

  37. Mann, J., & Davies, M. J. (1999). Mechanisms of progression in native coronary artery disease: role of healed plaque disruption. Heart, 82(3), 265–268.

    PubMed  CAS  Google Scholar 

  38. Yonetsu, T., Kakuta, T., Lee, T., et al. (2010). Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography. European Heart Journal, 31(13), 1608–1615.

    Article  PubMed  Google Scholar 

  39. Stone, G. W., Maehara, A., Lansky, A. J., for the PROSPECT Investigators, et al. (2011). A prospective natural-history study of coronary atherosclerosis. The New England Journal of Medicine, 364, 226–235.

    Article  PubMed  CAS  Google Scholar 

  40. Glaser, R., Selzer, F., & Faxon, D. P. (2005). Clinical progression of incidental asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation, 111, 143–149.

    Article  PubMed  Google Scholar 

  41. Spagnoli, L. G., Bonanno, E., Mauriello, A., et al. (2002). Multicentric inflammation in epicardial coronary arteries of patients dying of acute myocardial infarction. Journal of the American College of Cardiology, 40(9), 1579–1588.

    Article  PubMed  Google Scholar 

  42. Narducci, M. L., Grasselli, A., Biasucci, L. M., et al. (2007). High telomerase activity in neutrophils from unstable coronary plaques. Journal of the American College of Cardiology, 50(25), 2369–2374.

    Article  PubMed  CAS  Google Scholar 

  43. Liuzzo, G., Kopecky, S. L., Frye, R. L., et al. (1999). Perturbation of the T-cell repertoire in patients with unstable angina. Circulation, 100(21), 2135–2139.

    PubMed  CAS  Google Scholar 

  44. Liuzzo, G., Goronzy, J. J., Yang, H., et al. (2000). Monoclonal T-cell proliferation and plaque instability in acute coronary syndromes. Circulation, 101(25), 2883–2888.

    PubMed  CAS  Google Scholar 

  45. Giubilato, S., Liuzzo, G., Brugaletta, S., et al. (2011). Expansion of CD4+CD28null T-lymphocytes in diabetic patients: exploring new pathogenetic mechanisms of increased cardiovascular risk in diabetes mellitus. European Heart Journal, 32(10), 1214–1226.

    Article  PubMed  CAS  Google Scholar 

  46. Strauss, H. W., Dunphy, M., & Tokita, N. (2004). Imaging the vulnerable plaque: a scintillating light at the end of the tunnel? Journal of Nuclear Medicine, 45, 1106–1107.

    PubMed  CAS  Google Scholar 

  47. Vallabhajosula, S., Machac, J., Knesaurek, K., et al. (1996). Imaging atherosclerosis macrophage density by positron emission tomography using F-18-fluorodeoxyglucose (FDG). Journal of Nuclear Medicine, 37, 38P.

    Google Scholar 

  48. Davies, J. R., Izquierdo-Garcia, D., Rudd, J. H., et al. (2010). FDG-PET can distinguish inflamed from non-inflamed plaque in an animal model of atherosclerosis. The International Journal of Cardiovascular Imaging, 26(1), 41–48.

    Article  PubMed  Google Scholar 

  49. Tahara, N., Kai, H., Ishibashi, M., et al. (2006). Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. Journal of the American College of Cardiology, 48, 1825–1831.

    Article  PubMed  CAS  Google Scholar 

  50. Yun, M., Yeh, D., Araujo, L., et al. (2001). F-18 FDG uptake in the large arteries: a new observation. Clinical Nuclear Medicine, 26, 314–319.

    Article  PubMed  CAS  Google Scholar 

  51. Davies, J. R., Rudd, J. H., Fryer, T. D., et al. (2005). Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke, 36(12), 2642–2647.

    Article  PubMed  Google Scholar 

  52. Tawakol, A., Migrino, R. Q., Hoffmann, U., et al. (2005). Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. Journal of Nuclear Cardiology, 12, 294–301.

    Article  PubMed  Google Scholar 

  53. Moustafa, R. R., Izquierdo-Garcia, D., Fryer, T. D., et al. (2010). Carotid plaque inflammation is associated with cerebral microembolism in patients with recent transient ischemic attack or stroke: a pilot study. Circulation Cardiovascular Imaging, 3(5), 536–541.

    Article  PubMed  Google Scholar 

  54. Wykrzykowska, J., Lehman, S., Williams, G., et al. (2009). Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low carbohydrate, high-fat preparation. Journal of Nuclear Medicine, 50, 563–568.

    Article  PubMed  Google Scholar 

  55. Rogers, I. S., Nasir, K., Figueroa, A. L., et al. (2010). Feasibility of FDG imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovascular Imaging, 3(4), 388–397.

    Article  PubMed  Google Scholar 

  56. Folco, E. J., Sheikine, Y., Rocha, V. Z., et al. (2011). Hypoxia but not inflammation augments glucose uptake in human macrophages implications for imaging atherosclerosis with (18)fluorine-labeled 2-deoxy-d-glucose positron emission tomography. Journal of the American College of Cardiology, 58(6), 603–614.

    Article  PubMed  CAS  Google Scholar 

  57. Rojas, S., Martin, A., Arranz, M. J., et al. (2007). Imaging brain inflammation with [(11)C]PK11195 by PET and induction of the peripheral-type benzodiazepine receptor after transient focal ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 27, 1975–1986.

    Article  PubMed  CAS  Google Scholar 

  58. Fujimura, Y., Hwang, P. M., Trout Iii, H., et al. (2008). Increased peripheral benzodiazepine receptors in arterial plaque of patients with atherosclerosis: an autoradiographic study with [3H]PK11195. Atherosclerosis, 201, 108–111.

    Article  PubMed  CAS  Google Scholar 

  59. Pugliese, F., Gaemperli, O., Kinderlerer, A. R., et al. (2010). Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. Journal of the American College of Cardiology, 56(8), 653–661.

    Article  PubMed  Google Scholar 

  60. Laitinen, I., Marjamaki, P., Nagren, K., et al. (2009). Uptake of inflammatory cell marker [11C]PK11195 into mouse atherosclerotic plaques. European Journal of Nuclear Medicine and Molecular Imaging, 36(1), 73–80.

    Article  PubMed  CAS  Google Scholar 

  61. Chauveau, F., Boutin, H., Van Camp, N., et al. (2008). Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. European Nuclear Medicine Molecular Imaging, 35(12), 2304–2319.

    Article  Google Scholar 

  62. Nahrendorf, M., Zhang, H., Hembrador, S., et al. (2008). Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation, 117(3), 379–387.

    Article  PubMed  CAS  Google Scholar 

  63. Velazquez, E. J., Lee, K. L., Deja, M. A., et al. (2011). Coronary-artery bypass surgery in patients with left ventricular dysfunction. The New England Journal of Medicine, 364(17), 1607–1616.

    Article  PubMed  CAS  Google Scholar 

  64. Cristell N, Cianflone D, Ammirati D et al (2011) High sensitivity C-reactive protein is within normal levels at the very onset of a first ST-segment elevation acute myocardial infarction (FAMI) in 41% of the cases: a multi-ethnic case control study. Journal of the American College of Cardiology (in press)

  65. Di Carli, M. F. (2004). Advances in positron emission tomography. Journal of Nuclear Cardiology, 11, 719–732.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonarda Galiuto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galiuto, L., Paraggio, L., De Caterina, A.R. et al. Positron Emission Tomography in Acute Coronary Syndromes. J. of Cardiovasc. Trans. Res. 5, 11–21 (2012). https://doi.org/10.1007/s12265-011-9332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9332-9

Keywords

Navigation