Skip to main content
Log in

Radionuclide Imaging in Decision-Making for Coronary Revascularization in Stable Ischemic Heart Disease

  • Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

This review will discuss the current nuclear imaging techniques for defining ischemia and hibernation/viability, their advantages and disadvantages, and the data related to their use to direct revascularization decisions.

Recent Findings

Recent interventional trials highlight the importance of functional imaging in trying to determine who may benefit from revascularization. Outcome benefit from revascularization has previously been shown in patients with significant ischemia, and flow quantification from positron emission tomography (PET) may allow for further risk stratification; similar data may soon be available with single-photon emission computed tomography (SPECT) as well using the newer cadmium-zinc-telluride (CZT) cameras. Some degree of equipoise still exists regarding the utilization of myocardial viability to guide revascularization in patients with ischemic cardiomyopathy, with recent studies presenting conflicting results.

Summary

There is a niche for radionuclide imaging in helping to guide revascularization decision-making, and advances in recent years are providing new mechanisms by which we may better clarify the particular circumstances in which it can and should be applied. However, most data at this time is limited to observational cohorts and inferences from other randomized trials. The results of upcoming trials like ISCHEMIA and AIMI-HF will hopefully provide the needed evidence to support current clinical practice, or may change our algorithms altogether.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4:256.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics 2016 update: a report from the American Heart Association. Circulation. 2016;133:447–54.

    Article  PubMed  Google Scholar 

  3. Sellke FW, Chu LM, Cohn WE. Current state of surgical myocardial revascularization. Circ J. 2010;74:1031–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nabel EG, Braunwald E. A tale of coronary artery disease and myocardial infarction. N Engl J Med. 2012;366:54–63.

    Article  PubMed  CAS  Google Scholar 

  5. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the task force on myocardial revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35:2541–619.

    Article  PubMed  Google Scholar 

  6. Fihn SD, Blankenship JC, Alexander KP, Bittl J a, Byrne JG, Fletcher BJ, et al. ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography, and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;64:1929–49.

    Article  PubMed  Google Scholar 

  7. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.

    Article  PubMed  CAS  Google Scholar 

  8. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, Van’t Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  PubMed  CAS  Google Scholar 

  9. De Bruyne B, Fearon WF, Pijls NH, Barbato E, Tonino P, Piroth Z, et al. Fractional flow reserve–guided PCI for stable coronary artery disease. N Engl J Med. 2014;371:1208–17.

    Article  PubMed  CAS  Google Scholar 

  10. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation. 2008;117:1283–91.

    Article  PubMed  Google Scholar 

  11. • Mielniczuk LM, Toth GG, Xie JX, De Bruyne B, Shaw LJ, Beanlands RS. Can functional testing for ischemia and viability guide revascularization? JACC Cardiovasc Imaging. 2017;10:354–64. Good review of the role of ischemia and viability testing in ischemic heart disease and expected contributions from ongoing trials.

    Article  PubMed  Google Scholar 

  12. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  13. • Mc Ardle B, Shukla T, Nichol G, deKemp, RA, Bernick J, Guo A, et al. Long-term follow-up of outcomes with F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction secondary to coronary disease. Circ Cardiovasc Imaging. 2016; 9. Long-term outome data highlighting the benefit of PET viability imaging in patients with suspected ischemic cardiomyopathy being considered for revascularization, provided there is adherence to PET recommendations. Circ Cardiovasc Imaging. 2016;9(9). pii: e004331.

  14. Ziadi MC, deKemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol. 2012;19:670–80.

    Article  PubMed  Google Scholar 

  15. Juneau D, Erthal F, Ohira H, Mc Ardle B, Hessian R, deKemp RA, et al. Clinical PET myocardial perfusion imaging and flow quantification. Cardiol Clin. 2016;34:69–85.

    Article  PubMed  Google Scholar 

  16. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53:1230–4.

    Article  PubMed  CAS  Google Scholar 

  17. Pazhenkottil AP, Buechel RR, Husmann L, Nkoulou RN, Wolfrum M, Ghadri JR, et al. Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging. Heart. 2011;97:33–7.

    Article  PubMed  Google Scholar 

  18. Ziadi MC, deKemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8.

    Article  PubMed  Google Scholar 

  19. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hsu B, Chen FC, Wu TC, Huang WS, Hou PN, Chen CC, et al. Quantitation of myocardial blood flow and myocardial flow reserve with 99mTc-sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease. Eur J Nucl Med Mol Imaging. 2014;41:2294–306.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu B, Hu LH, Yang BH, Chen LC, Chen YK, Ting CH, et al. SPECT myocardial blood flow quantitation toward clinical use: a comparative study with 13N-Ammonia PET myocardial blood flow quantitation. Eur J Nucl Med Mol Imaging. 2017;44:117–28.

    Article  PubMed  CAS  Google Scholar 

  22. Shrestha U, Sciammarella M, Alhassen F, Yeghiazarians Y, Ellin J, Verdin E, et al. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: method and validation. J Nucl Cardiol. 2017;24:268–77.

    Article  PubMed  Google Scholar 

  23. Erthal F, Lima R, Wells RG, Ruddy TD. Quantification of myocardial blood flow with CZT SPECT imaging: is it ready for clinical use? Curr Cardiovasc Imaging Rep. 2017;10:34.

    Article  Google Scholar 

  24. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ. ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol. 2016;23:606–39.

    Article  PubMed  Google Scholar 

  25. Loong CY, Anagnostopoulos C. Diagnosis of coronary artery disease by radionuclide myocardial perfusion imaging. Heart. 2004;90(Suppl 5):v2–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1). pii: e002666..

  27. Uffmann M, Schaefer-Prokop C. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol. 2009;72:202–8.

    Article  PubMed  Google Scholar 

  28. Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897–903.

    Article  PubMed  Google Scholar 

  29. Lima RSL, Peclat TR, Souza ACAH, Nakamoto AMK, Neves FM, Souza VF, et al. Prognostic value of a faster, low-radiation myocardial perfusion SPECT protocol in a CZT camera. Int J Cardiovasc Imaging. 2017;33:2049–56.

    Article  PubMed  Google Scholar 

  30. Wells RG, Timmins R, Klein R, Lockwood J, Marvin B, deKemp RA, et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med. 2014;55:1685–91.

    Article  PubMed  CAS  Google Scholar 

  31. • Boiten HJ, van den Berge JC, Valkema R, van Domburg RT, Zijlstra F, Schinkel AF. Ischemia burden on stress SPECT MPI predicts long-term outcomes after revascularization in stable coronary artery disease. J Nucl Cardiol. 2018;25:958-66. This study supports previous findings by demonstrating a mortality benefit in patients with ischemia on SPECT MPI who undergo early revascularization, driven by those with moderate to severe ischemia burden.

  32. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  33. Hachamovitch R, Rozanski A, Hayes SW, Thomson LE, Germano G, Friedman JD, et al. Predicting therapeutic benefit from myocardial revascularization procedures: are measurements of both resting left ventricular ejection fraction and stress-induced myocardial ischemia necessary? J Nucl Cardiol. 2006;13:768–78.

    Article  PubMed  Google Scholar 

  34. Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, et al. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32:1012–24.

    Article  PubMed  Google Scholar 

  35. Koh AS, Lye WK, Chia SY, Salunat-Flores J, Sim LL, Keng FYJ, et al. Long-term prognostic value of appropriate myocardial perfusion imaging. Am J Cardiol. 2017;119:1957–62.

    Article  PubMed  Google Scholar 

  36. Petretta M, Acampa W, Daniele S, Zampella E, Assante R, Nappi C, et al. Long-term survival benefit of coronary revascularization in patients undergoing stress myocardial perfusion imaging. Circ J. 2016;80:485–93.

    Article  PubMed  Google Scholar 

  37. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Karthikeyan G, Guzic Salobir B, Jug B, Devasenapathy N, Alexanderson E, Vitola J, et al. Functional compared to anatomical imaging in the initial evaluation of patients with suspected coronary artery disease: an international, multi-center, randomized controlled trial (IAEA-SPECT/CTA study). J Nucl Cardiol. 2017;24:507–17.

    Article  PubMed  Google Scholar 

  39. Chaitman BR, Hardison RM, Adler D, Gebhart S, Grogan M, Ocampo S, et al. The bypass angioplasty revascularization investigation 2 diabetes randomized trial of different treatment strategies in type 2 diabetes mellitus with stable ischemic heart disease: impact of treatment strategy on cardiac mortality and myocardial infarction. Circulation. 2009;120:2529–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shaw LJ, Cerqueira MD, Brooks MM, Althouse AD, Sansing VV, Beller GA, et al. Impact of left ventricular function and the extent of ischemia and scar by stress myocardial perfusion imaging on prognosis and therapeutic risk reduction in diabetic patients with coronary artery disease: results from the bypass angioplasty revascularization investigation 2 diabetes (BARI 2D) trial. J Nucl Cardiol. 2012;19:658–69.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bateman TM, Dilsizian V, Beanlands RS, DePuey EG, Heller GV, Wolinsky DA. American Society of Nuclear Cardiology and Society of nuclear medicine and molecular imaging joint position statement on the clinical indications for myocardial perfusion PET. J Nucl Med. 2016;57:654–6.

    Article  Google Scholar 

  42. Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther. 2017;7:206–18.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23:1187–226.

    Article  PubMed  Google Scholar 

  44. •• Murthy VL, Bateman TM, Beanlands RS, Berman DS, Borges-Neto S, Chareonthaitawee P, et al. Clinical quantification of myocardial blood flow using PET: joint position paper of the SNMMI cardiovascular council and the ASNC. J Nucl Med. 2018;59:273–93. New joint position paper on technical considerations and clinical applications of PET myocardial blood flow.

    Article  PubMed  Google Scholar 

  45. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54:150–6.

    Article  PubMed  Google Scholar 

  46. Danad I, Raijmakers PG, Driessen RS, Leipsic J, Raju R, Naoum C, et al. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol. 2017;2:1100–7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging. 2009;2:751–8.

    Article  PubMed  Google Scholar 

  48. Kajander S, Joutsiniemi E, Saraste M, Pietilä M, Ukkonen H, Saraste A, et al. Cardiac positron emission tomography/computed tomography imaging accurately detects anatomically and functionally significant coronary artery disease. Circulation. 2010;122:603–13.

    Article  PubMed  CAS  Google Scholar 

  49. Parkash R, deKemp RA, Ruddy TD, Kitsikis A, Hart R, Beauschene L, et al. Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol. 2004;11:440–9.

    Article  PubMed  CAS  Google Scholar 

  50. Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, et al. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol. 2013;61:176–84.

    Article  PubMed  Google Scholar 

  51. Gupta A, Taqueti VR, van de Hoef TP, Bajaj NS, Bravo PE, Murthy VL, et al. Integrated non-invasive physiological assessment of coronary circulatory function and impact on cardiovascular mortality in patients with stable coronary artery disease. Circulation. 2017;136:2325–36.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bober RM, Thompson CD, Morin DP. The effect of coronary revascularization on regional myocardial blood flow as assessed by stress positron emission tomography. J Nucl Cardiol. 2017;24:961–74.

    Article  PubMed  Google Scholar 

  53. Patel MR, Calhoon JH, Dehmer GJ, Grantham JA, Maddox TM, Maron DJ, et al. ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT/STS 2017 appropriate use criteria for coronary revascularization in patients with stable ischemic heart disease. J Am Coll Cardiol. 2017;69:2212–41.

    Article  PubMed  Google Scholar 

  54. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, et al. For the Bari 2D study group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360:2503–15.

    Article  PubMed  CAS  Google Scholar 

  55. • Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, et al. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27. Interesting trial in which MFR was associated with outcomes independent of angiographic CAD and also modified the effect of early revascularization, in particular demonstrating an outcome benefit with CABG in those with reduced MFR.

    Article  PubMed  Google Scholar 

  56. Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging. 2012;5:193–202.

    Article  PubMed  Google Scholar 

  57. van de Hoef TP, van Lavieren MA, Damman P, Delewi R, Piek MA, Chamuleau SA, et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ Cardiovasc Interv. 2014;7:301–11.

    Article  PubMed  Google Scholar 

  58. Feher A, Sinusas AJ. Quantitative assessment of coronary microvascular function: dynamic single-photon emission computed tomography, positron emission tomography, ultrasound, computed tomography, and magnetic resonance imaging. Circ Cardiovasc Imaging. 2017;10(8). pii: e006427.

  59. • Ben Bouallegue F, Roubille F, Lattuca B, Cung TT, Macia JC, Gervasoni R, et al. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements. J Nucl Med. 2015;56:1712–7. Study demonstrating the ability to obtain flow quantification data with SPECT using a CZT camera and its good correlation with invasive angiographic findings.

    Article  PubMed  CAS  Google Scholar 

  60. Wells RG, Marvin B, Poirier M, Renaud JM, deKemp RA, Ruddy TD. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood-binding compared to PET. J Nucl Med. 2017;58:2013–9.

    Article  PubMed  Google Scholar 

  61. Bateman TM, Dilsizian V, Beanlands RS, DePuey EG, Heller GV, Wolinsky DA. American Society of Nuclear Cardiology and Society of nuclear medicine and molecular imaging joint position statement on the clinical indications for myocardial perfusion PET. J Nucl Med. 2016;57:1654–6.

    Article  PubMed  Google Scholar 

  62. Heusch G. The regional myocardial flow-function relationship: a framework for an understanding of acute ischemia, hibernation, stunning and coronary microembolization. Circ Res. 2013;112:1535–7.

    Article  PubMed  CAS  Google Scholar 

  63. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31:2984–95.

    Article  PubMed  Google Scholar 

  64. Romero J, Xue X, Gonzalez W, Garcia MJ. CMR imaging assessing viability in patients with chronic ventricular dysfunction due to coronary artery disease: a meta-analysis of prospective trials. JACC Cardiovasc Imaging. 2012;5:494–508.

    Article  PubMed  Google Scholar 

  65. Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med. 2016;374:1511–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. D’Egidio G, Nichol G, Williams KA, Guo A, Garrard L, deKemp R, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation. A substudy of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2:1060–8.

    Article  PubMed  Google Scholar 

  68. Ling LF, Marwick TH, Flores DR, Jaber WA, Brunken RC, Cerqueira MD, et al. Identification of therapeutic benefit from revascularization in patients with left ventricular systolic dysfunction: inducible ischemia versus hibernating myocardium. Circ Cardiovasc Imaging. 2013;6:363–72.

    Article  PubMed  Google Scholar 

  69. Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32:375–410.

    Article  PubMed  Google Scholar 

  70. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  71. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrard L, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE substudy of the PARR 2 trial. J Nucl Med. 2010;51:567–74.

    Article  PubMed  Google Scholar 

  72. Rischpler C, Langwieser N, Souvatzoglou M, Batrice A, van Marwick S, Snajberk J, et al. PET/MRI early aftermyocardial infarction: evaluation of viability with late gadolinium enhancement transmurality vs. 18F-FDG uptake. Eur Heart J Cardiovasc Imaging. 2015;16:661–9.

    PubMed  Google Scholar 

  73. Zelt JGE, Liu PP, Erthal F, deKemp RA, Wells G, O’Meara E, et al. N-terminal pro B-type natriuretic peptide and high-sensitivity cardiac troponin T levels are related to the extent of hibernating myocardium in patients with ischemic heart failure. Can J Cardiol. 2017;33:1478–88.

    Article  PubMed  Google Scholar 

  74. Nudi F, Iskandrian AE, Schillaci O, Peruzzi M, Frati G, Biondi-Zoccai G. Diagnostic accuracy of myocardial perfusion imaging with CZT technology: systemic review and meta-analysis of comparison with invasive coronary angiography. JACC Cardiovasc Imaging. 2017;10:787–94.

    Article  PubMed  Google Scholar 

  75. Duivenvoorden R, Mani V, Woodward M, Kallend D, Suchankova G, Fuster V, et al. Relationship of serum inflammatory biomarkers with plaque inflammation assessed by FDG PET/CT: the dal-PLAQUE study. JACC Cardiovasc Imaging. 2013;6:1087–94.

    Article  PubMed  Google Scholar 

  76. Rominger A, Saam T, Wolpers S, Cyran CC, Schmidt M, Foerster S, et al. 18F-FDG PET/CT identifies patients at risk for future vascular events in an otherwise asymptomatic cohort with neoplastic disease. J Nucl Med. 2009;50:1611–20.

    Article  PubMed  Google Scholar 

  77. Figueroa AL, Abdelbaky A, Truong QA, Corsini E, MacNabb MH, Lavender ZR, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imaging. 2013;6:1250–9.

    Article  PubMed  Google Scholar 

  78. Emami H, Singh P, Macnabb M, Vucic E, Lavender Z, Rudd JH, et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc Imaging. 2015;8:121–30.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389:834–45.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.

    Article  PubMed  Google Scholar 

  81. Lee JM, Bang JI, Koo BK, Hwang D, Park J, Zhang J, et al. Clinical relevance of (18)F-sodium fluoride positron-emission tomography in noninvasive identification of high-risk plaque in patients with coronary artery disease. Circ Cardiovasc Imaging. 2017;10(11). pii: e006704.

  82. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  PubMed  CAS  Google Scholar 

  83. Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38:500–7.

    PubMed  Google Scholar 

  84. Arsanjani R, Dey D, Shalev A, Khachatryan T, Hayes S, Fish M, et al. Improved accuracy of myocardial perfusion SPECT for prediction of revascularization by machine learning in a large population. J Am Coll Cardiol. 2014;63:A1229.

    Article  Google Scholar 

  85. Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22:877–84.

    Article  PubMed  Google Scholar 

  86. Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2017 Oct 16. pii: S1936-878X(17)30804-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob S. B. Beanlands.

Ethics declarations

Conflict of Interest

Robert A deKemp reports grants from Canadian Institutes of Health Research during the conduct of the study, grants from Jubilant DraxImage outside the submitted work, and a patent Rubidium Generator Technologies licensed to Jubilant DraxImage. Rob SB Beanlands reports grants and personal honorarium from GE, Lantheus Medical Imaging, and Jubilant DRAXImage, outside the submitted work. All other authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiac Nuclear Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiefels, C., Erthal, F., deKemp, R.A. et al. Radionuclide Imaging in Decision-Making for Coronary Revascularization in Stable Ischemic Heart Disease. Curr Cardiovasc Imaging Rep 11, 20 (2018). https://doi.org/10.1007/s12410-018-9458-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-018-9458-0

Keywords

Navigation