Skip to main content

Advertisement

Log in

NADPH Oxidase and Cardiac Failure

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Increases in oxidative stress in the heart play an important role in mediating hypertrophy, apoptosis, fibrosis, mitochondrial dysfunction, and the consequent development of heart failure. Although it has been widely believed that electron leakage from the mitochondrial electron transport chain is the primary source of oxidative stress in the failing heart, increasing lines of evidence suggest that enzymes which produce reactive oxygen species may also contribute to it. NADPH oxidases are transmembrane enzymes dedicated to producing superoxide (O2 ) by transferring an electron from NAD(P)H to molecular oxygen. Nox4 is a major NADPH oxidase isoform expressed in the heart. Nox4 is localized primarily at mitochondria in cardiac myocytes, and upregulation of Nox4 hypertrophic stimuli enhances O2 production, apoptosis, and mitochondrial dysfunction, thereby playing an important role in mediating cardiac dysfunction. Since Nox4 could be a key molecule mediating oxidative stress and pathological hypertrophy, it may serve as an important target of heart failure treatment. In this review, the importance of NADPH oxidases as sources of increased oxidative stress in the failing heart and the role of Nox4 in mediating growth and death of cardiac myocytes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Giordano, F. J. (2005). Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation, 115(3), 500–508.

    PubMed  CAS  Google Scholar 

  2. Finkel, T. (2003). Oxidant signals and oxidative stress. Current Opinion in Cell Biology, 15(2), 247–254.

    Article  PubMed  CAS  Google Scholar 

  3. Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3), 181–189.

    Article  PubMed  CAS  Google Scholar 

  4. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology. Physiological Reviews, 87(1), 245–313.

    Article  PubMed  CAS  Google Scholar 

  5. Akki, A., Zhang, M., Murdoch, C., Brewer, A., & Shah, A. M. (2009). NADPH oxidase signaling and cardiac myocyte function. J Mol Cell Cardiol, 47(1), 15–22.

    Article  PubMed  CAS  Google Scholar 

  6. Sumimoto, H., Miyano, K., & Takeya, R. (2005). Molecular composition and regulation of the Nox family NAD(P)H oxidases. Biochemical and Biophysical Research Communications, 338(1), 677–686.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, D. I., & Griendling, K. K. (2009). Nox proteins in signal transduction. Free Radical Biology and Medicine, 47(9), 1239–1253.

    Article  PubMed  CAS  Google Scholar 

  8. Lyle, A. N., Deshpande, N. N., Taniyama, Y., Seidel-Rogol, B., Pounkova, L., Du, P., et al. (2009). Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circulation Research, 105(3), 249–259.

    Article  PubMed  CAS  Google Scholar 

  9. Serrander, L., Cartier, L., Bedard, K., Banfi, B., Lardy, B., Plastre, O., et al. (2007). NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochemical Journal, 406(1), 105–114.

    Article  PubMed  CAS  Google Scholar 

  10. Bendall, J. K., Cave, A. C., Heymes, C., Gall, N., & Shah, A. M. (2002). Pivotal role of a gp91(phox)-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation, 105(3), 293–296.

    Article  PubMed  CAS  Google Scholar 

  11. Xiao, L., Pimentel, D. R., Wang, J., Singh, K., Colucci, W. S., & Sawyer, D. B. (2002). Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. American Journal of Physiology Cell Physiology, 282(4), C926–934.

    PubMed  CAS  Google Scholar 

  12. Li, J., Stouffs, M., Serrander, L., Banfi, B., Bettiol, E., Charnay, Y., et al. (2006). The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Molecular Biology of the Cell, 17(9), 3978–3988.

    Article  PubMed  CAS  Google Scholar 

  13. Byrne, J. A., Grieve, D. J., Bendall, J. K., Li, J. M., Gove, C., Lambeth, J. D., et al. (2003). Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circulation Research, 93(9), 802–805.

    Article  PubMed  CAS  Google Scholar 

  14. Kuroda, J., Ago, T., & Sadoshima, J. (2009). Nox4 is a major source of superoxide production in the mouse heart. Circulation, 120(18 Supplement), S614.

    Google Scholar 

  15. Artham, S. M., Lavie, C. J., Milani, R. V., Patel, D. A., Verma, A., & Ventura, H. O. (2009). Clinical impact of left ventricular hypertrophy and implications for regression. Progress in Cardiovascular Diseases, 52(2), 153–167.

    Article  PubMed  Google Scholar 

  16. Nakamura, K., Fushimi, K., Kouchi, H., Mihara, K., Miyazaki, M., Ohe, T., et al. (1998). Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation, 98(8), 794–799.

    PubMed  CAS  Google Scholar 

  17. Hirotani, S., Otsu, K., Nishida, K., Higuchi, Y., Morita, T., Nakayama, H., et al. (2002). Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation, 105(4), 509–515.

    Article  PubMed  CAS  Google Scholar 

  18. Oka, S., Ago, T., Kitazono, T., Zablocki, D., & Sadoshima, J. (2009). The role of redox modulation of class II histone deacetylases in mediating pathological cardiac hypertrophy. Journal of Molecular Medicine, 87(8), 785–791.

    Article  PubMed  CAS  Google Scholar 

  19. Bush, E. W., & McKinsey, T. A. (2009). Targeting histone deacetylases for heart failure. Expert Opinion on Therapeutic Targets, 13(7), 767–784.

    Article  PubMed  CAS  Google Scholar 

  20. Ago, T., Liu, T., Zhai, P., Chen, W., Li, H., Molkentin, J. D., et al. (2008). A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell, 133(6), 978–993.

    Article  PubMed  CAS  Google Scholar 

  21. Li, J. M., Gall, N. P., Grieve, D. J., Chen, M., & Shah, A. M. (2002). Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension, 40(4), 477–484.

    Article  PubMed  CAS  Google Scholar 

  22. Maytin, M., Siwik, D. A., Ito, M., Xiao, L., Sawyer, D. B., Liao, R., et al. (2004). Pressure overload-induced myocardial hypertrophy in mice does not require gp91phox. Circulation, 109(9), 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  23. Doerries, C., Grote, K., Hilfiker-Kleiner, D., Luchtefeld, M., Schaefer, A., Holland, S. M., et al. (2007). Critical role of the NAD(P)H oxidase subunit p47phox for left ventricular remodeling/dysfunction and survival after myocardial infarction. Circulation Research, 100(6), 894–903.

    Article  PubMed  CAS  Google Scholar 

  24. Wencker, D., Chandra, M., Nguyen, K., Miao, W., Garantziotis, S., Factor, S. M., et al. (2003). A mechanistic role for cardiac myocyte apoptosis in heart failure. Journal of Clinical Investigation, 111(10), 1497–1504.

    PubMed  CAS  Google Scholar 

  25. Matsuzawa, A., & Ichijo, H. (2005). Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxidants Redox Signaling, 7(3–4), 472–481.

    PubMed  CAS  Google Scholar 

  26. Qin, F., Patel, R., Yan, C., & Liu, W. (2006). NADPH oxidase is involved in angiotensin II-induced apoptosis in H9C2 cardiac muscle cells: Effects of apocynin. Free Radical Biology and Medicine, 40(2), 236–246.

    Article  PubMed  CAS  Google Scholar 

  27. Grishko, V., Pastukh, V., Solodushko, V., Gillespie, M., Azuma, J., & Schaffer, S. (2003). Apoptotic cascade initiated by angiotensin II in neonatal cardiomyocytes: Role of DNA damage. American Journal of Physiology. Heart and Circulatory Physiology, 285(6), H2364–2372.

    PubMed  CAS  Google Scholar 

  28. Ago, T., Kuroda, J., Zhai, P., Fu, C., Li, H., Sadoshima, J. (2010). Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circulation Research (in press)

  29. Heineke, J., & Molkentin, J. D. (2006). Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology, 7(8), 589–600.

    Article  PubMed  CAS  Google Scholar 

  30. Kinnula, V. L., Fattman, C. L., Tan, R. J., & Oury, T. D. (2005). Oxidative stress in pulmonary fibrosis: A possible role for redox modulatory therapy. American Journal of Respiratory and Critical Care Medicine, 172(4), 417–422.

    Article  PubMed  Google Scholar 

  31. Poli, G. (2000). Pathogenesis of liver fibrosis: Role of oxidative stress. Molecular Aspects of Medicine, 21(3), 49–98.

    Article  PubMed  CAS  Google Scholar 

  32. Ha, H., & Lee, H. B. (2003). Reactive oxygen species and matrix remodeling in diabetic kidney. Journal of the American Society of Nephrology, 14(8 Suppl 3), S246–249.

    Article  PubMed  CAS  Google Scholar 

  33. An, S. J., Boyd, R., Zhu, M., Chapman, A., Pimentel, D. R., & Wang, H. D. (2007). NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts. Cardiovascular Research, 75(4), 702–709.

    Article  PubMed  CAS  Google Scholar 

  34. Johar, S., Cave, A. C., Narayanapanicker, A., Grieve, D. J., & Shah, A. M. (2006). Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB Journal, 20(9), 1546–1548.

    Article  PubMed  CAS  Google Scholar 

  35. Cucoranu, I., Clempus, R., Dikalova, A., Phelan, P. J., Ariyan, S., Dikalov, S., et al. (2005). NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circulation Research, 97(9), 900–907.

    Article  PubMed  CAS  Google Scholar 

  36. Peshavariya, H., Dusting, G. J., Jiang, F., Halmos, L. R., Sobey, C. G., Drummond, G. R., et al. (2009). NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn-Schmiedebergs Archives of Pharmacology, 380(2), 193–204.

    Article  CAS  Google Scholar 

  37. Menshikov, M., Plekhanova, O., Cai, H., Chalupsky, K., Parfyonova, Y., Bashtrikov, P., et al. (2006). Urokinase plasminogen activator stimulates vascular smooth muscle cell proliferation via redox-dependent pathways. Arteriosclerosis, Thrombosis, and Vascular Biology, 26(4), 801–807.

    Article  PubMed  CAS  Google Scholar 

  38. Gorin, Y., Ricono, J. M., Kim, N. H., Bhandari, B., Choudhury, G. G., & Abboud, H. E. (2003). Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells. American Journal of Physiology. Renal Physiology, 285(2), F219–229.

    PubMed  CAS  Google Scholar 

  39. Belch, J. J., Bridges, A. B., Scott, N., & Chopra, M. (1991). Oxygen free radicals and congestive heart failure. British Heart Journal, 65(5), 245–248.

    Article  PubMed  CAS  Google Scholar 

  40. Hill, M. F., & Singal, P. K. (1996). Antioxidant and oxidative stress changes during heart failure subsequent to myocardial infarction in rats. American Journal of Pathology, 148(1), 291–300.

    PubMed  CAS  Google Scholar 

  41. Ide, T., Tsutsui, H., Kinugawa, S., Suematsu, N., Hayashidani, S., Ichikawa, K., et al. (2000). Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circulation Research, 86(2), 152–157.

    PubMed  CAS  Google Scholar 

  42. Sam, F., Kerstetter, D. L., Pimental, D. R., Mulukutla, S., Tabaee, A., Bristow, M. R., et al. (2005). Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. Journal of Cardiac Failure, 11(6), 473–480.

    Article  PubMed  CAS  Google Scholar 

  43. Baumer, A. T., Flesch, M., Wang, X., Shen, Q., Feuerstein, G. Z., & Bohm, M. (2000). Antioxidative enzymes in human hearts with idiopathic dilated cardiomyopathy. Journal of Molecular and Cellular Cardiology, 32(1), 121–130.

    Article  PubMed  CAS  Google Scholar 

  44. Tsutsui, H., Ide, T., Hayashidani, S., Suematsu, N., Utsumi, H., Nakamura, R., et al. (2001). Greater susceptibility of failing cardiac myocytes to oxygen free radical-mediated injury. Cardiovascular Research, 49(1), 103–109.

    Article  PubMed  CAS  Google Scholar 

  45. Tsutsui, H. (2006). Mitochondrial oxidative stress and heart failure. Internal Medicine, 45(13), 809–813.

    Article  PubMed  Google Scholar 

  46. Tsutsui, H., Kinugawa, S., & Matsushima, S. (2009). Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovascular Research, 81(3), 449–456.

    Article  PubMed  CAS  Google Scholar 

  47. Ide, T., Tsutsui, H., Kinugawa, S., Utsumi, H., Kang, D., Hattori, N., et al. (1999). Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circulation Research, 85(4), 357–363.

    PubMed  CAS  Google Scholar 

  48. George, J., & Struthers, A. D. (2008). The role of urate and xanthine oxidase inhibitors in cardiovascular disease. Cardiovascular Drug Reviews, 26(1), 59–64.

    Article  CAS  Google Scholar 

  49. Bergamini, C., Cicoira, M., Rossi, A., & Vassanelli, C. (2009). Oxidative stress and hyperuricaemia: Pathophysiology, clinical relevance, and therapeutic implications in chronic heart failure. European Journal of Heart Failure, 11(5), 444–452.

    Article  PubMed  CAS  Google Scholar 

  50. Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., et al. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. Journal of Clinical Investigation, 111(8), 1201–1209.

    PubMed  CAS  Google Scholar 

  51. Otani, H. (2009). The role of nitric oxide in myocardial repair and remodeling. Antioxidants Redox Signaling, 11(8), 1913–1928.

    Article  PubMed  CAS  Google Scholar 

  52. Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss, G., et al. (2003). Increased myocardial NADPH oxidase activity in human heart failure. Journal of the American College of Cardiology, 41(12), 2164–2171.

    Article  PubMed  CAS  Google Scholar 

  53. Nojiri, H., Shimizu, T., Funakoshi, M., Yamaguchi, O., Zhou, H., Kawakami, S., et al. (2006). Oxidative stress causes heart failure with impaired mitochondrial respiration. Journal of Biological Chemistry, 281(44), 33789–33801.

    Article  PubMed  CAS  Google Scholar 

  54. Fu, C., Wu, C., Liu, T., Ago, T., Zhai, P., Sadoshima, J., et al. (2009). Elucidation of thioredoxin target protein networks in mouse. Molecular & Cell Proteomics, 8(7), 1674–1687.

    Article  CAS  Google Scholar 

  55. McNally, J. S., Saxena, A., Cai, H., Dikalov, S., & Harrison, D. G. (2005). Regulation of xanthine oxidoreductase protein expression by hydrogen peroxide and calcium. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(8), 1623–1628.

    Article  PubMed  CAS  Google Scholar 

  56. Williams, H. C., & Griendling, K. K. (2007). NADPH oxidase inhibitors: New antihypertensive agents? Journal of Cardiovascular Pharmacology, 50(1), 9–16.

    Article  PubMed  CAS  Google Scholar 

  57. Selemidis, S., Sobey, C. G., Wingler, K., Schmidt, H. H., & Drummond, G. R. (2008). NADPH oxidases in the vasculature: Molecular features, roles in disease and pharmacological inhibition. Pharmacology and Therapeutics, 120(3), 254–291.

    Article  PubMed  CAS  Google Scholar 

  58. Jaquet, V., Scapozza, L., Clark, R. A., Krause, K. H., & Lambeth, J. D. (2009). Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxidants Redox Signaling, 11(10), 2535–2552.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Daniela Zablocki for critical reading of the manuscript.

Sources of Funding

This work was supported in part by U.S. Public Health Service Grants HL 59139, HL67724, HL69020, HL91469, and AG27211.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Sadoshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, J., Sadoshima, J. NADPH Oxidase and Cardiac Failure. J. of Cardiovasc. Trans. Res. 3, 314–320 (2010). https://doi.org/10.1007/s12265-010-9184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-010-9184-8

Keywords

Navigation