Skip to main content

Expanding Views of Mitochondria in Parkinson’s Disease: Focusing on PINK1 and GBA1 Mutations

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Johnson ME, Stecher B, Labrie V, Brundin L, Brundin P. Triggers, facilitators, and aggravators: Redefining Parkinson’s disease pathogenesis. Trends Neurosci 2019, 42: 4–13.

    CAS  Article  Google Scholar 

  2. Trinh D, Israwi AR, Arathoon LR, Gleave JA, Nash JE. The multi-faceted role of mitochondria in the pathology of Parkinson’s disease. J Neurochem 2021, 156: 715–752.

    CAS  Article  Google Scholar 

  3. González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E, Yang B. Disruption of mitochondrial complex I induces progressive Parkinsonism. Nature 2021, 599: 650–656.

    Article  Google Scholar 

  4. Esteves AR, Munoz-Pinto MF, Nunes-Costa D, Candeias E, Silva DF, Magalhães JD, et al. Footprints of a microbial toxin from the gut microbiome to mesencephalic mitochondria. Gut 2021. https://doi.org/10.1136/gutjnl-2021-326023.

  5. Li H, Wu SH, Ma X, Li X, Cheng TL, Chen ZF, et al. Co-editing PINK1 and DJ-1 genes via adeno-associated virus-delivered CRISPR/Cas9 system in adult monkey brain elicits classical parkinsonian phenotype. Neurosci Bull 2021, 37: 1271–1288.

    CAS  Article  Google Scholar 

  6. Yamada T, Dawson TM, Yanagawa T, Iijima M, Sesaki H. SQSTM1/p62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/parkin in mitophagy. Autophagy 2019, 15: 2012–2018.

    CAS  Article  Google Scholar 

  7. Lin JJ, Chen K, Chen WF, Yao YZ, Ni SW, Ye MN, et al. Paradoxical mitophagy regulation by PINK1 and TUFm. Mol Cell 2020, 80: 607-620.e12.

    CAS  Article  Google Scholar 

  8. Yang WL, Guo XY, Tu ZC, Chen XS, Han R, Liu YT, et al. PINK1 kinase dysfunction triggers neurodegeneration in the primate brain without impacting mitochondrial homeostasis. Protein Cell 2022, 13: 26–46.

    CAS  Article  Google Scholar 

  9. Vos M, Dulovic-Mahlow M, Mandik F, Frese L, Kanana Y, Haissatou Diaw S, et al. Ceramide accumulation induces mitophagy and impairs β-oxidation in PINK1 deficiency. Proc Natl Acad Sci U S A 2021, 118. e2025347118.

  10. Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat Neurosci 2019, 22: 1099–1109.

    CAS  Article  Google Scholar 

  11. Burbulla LF, Jeon S, Zheng JB, Song PP, Silverman RB, Krainc D. A modulator of wild-type glucocerebrosidase improves pathogenic phenotypes in dopaminergic neuronal models of Parkinson's disease. Sci Transl Med 2019, 11: eaau6870.

  12. Behl T, Kaur G, Fratila O, Buhas C, Judea-Pusta CT, Negrut N, et al. Cross-talks among GBA mutations, glucocerebrosidase, and α-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: A comprehensive review. Transl Neurodegener 2021, 10: 4.

    CAS  Article  Google Scholar 

  13. Li HY, Ham A, Ma TC, Kuo SH, Kanter E, Kim D, et al. Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations. Autophagy 2019, 15: 113–130.

    CAS  Article  Google Scholar 

  14. Kim S, Wong YC, Gao FD, Krainc D. Dysregulation of mitochondria-lysosome contacts by GBA1 dysfunction in dopaminergic neuronal models of Parkinson’s disease. Nat Commun 1807, 2021: 12.

    Google Scholar 

  15. Seo BA, Kim D, Hwang H, Kim MS, Ma SX, Kwon SH, et al. TRIP12 ubiquitination of glucocerebrosidase contributes to neurodegeneration in Parkinson’s disease. Neuron 2021, 109: 3758-3774.e11.

    CAS  Article  Google Scholar 

  16. Osellame LD, Rahim AA, Hargreaves IP, Gegg ME, Richard-Londt A, Brandner S, et al. Mitochondria and quality control defects in a mouse model of Gaucher disease—links to Parkinson’s disease. Cell Metab 2013, 17: 941–953.

    CAS  Article  Google Scholar 

  17. Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, Baev AY, et al. Α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Commun 2018, 9: 2293.

    Article  Google Scholar 

  18. Erskine D, Koss D, Korolchuk VI, Outeiro TF, Attems J, McKeith I. Lipids, lysosomes and mitochondria: Insights into Lewy body formation from rare monogenic disorders. Acta Neuropathol 2021, 141: 511–526.

    CAS  Article  Google Scholar 

  19. Wang R, Sun HY, Ren HG, Wang GH. Α-Synuclein aggregation and transmission in Parkinson’s disease: A link to mitochondria and lysosome. Sci China Life Sci 2020, 63: 1850–1859.

    CAS  Article  Google Scholar 

  20. Wang CJ, Yang TT, Liang MY, Xie JX, Song N. Astrocyte dysfunction in Parkinson’s disease: From the perspectives of transmitted α-synuclein and genetic modulation. Transl Neurodegener 2021, 10: 39.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This insight article was supported by the National Natural Science Foundation of China (32170984 and 31871049), the Excellent Innovative Team of Shandong Province, and the Taishan Scholars Construction Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Song or Junxia Xie.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Ma, X., Song, N. et al. Expanding Views of Mitochondria in Parkinson’s Disease: Focusing on PINK1 and GBA1 Mutations. Neurosci. Bull. 38, 825–828 (2022). https://doi.org/10.1007/s12264-022-00867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00867-0