Skip to main content
Log in

High-Throughput Automatic Training System for Spatial Working Memory in Free-Moving Mice

  • METHOD
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Efficient behavioral assays are crucial for understanding the neural mechanisms of cognitive functions. Here, we designed a high-throughput automatic training system for spatial cognition (HASS) for free-moving mice. Mice were trained to return to the home arm and remain there during a delay period. Software was designed to enable automatic training in all its phases, including habituation, shaping, and learning. Using this system, we trained mice to successfully perform a spatially delayed nonmatch to sample task, which tested spatial cognition, working memory, and decision making. Performance depended on the delay duration, which is a hallmark of working memory tasks. The HASS enabled a human operator to train more than six mice simultaneously with minimal intervention, therefore greatly enhancing experimental efficiency and minimizing stress to the mice. Combined with the optogenetic method and neurophysiological techniques, the HASS will be useful in deciphering the neural circuitry underlying spatial cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci 2014, 17: 1455–1462.

    Article  CAS  PubMed  Google Scholar 

  2. Baddeley A. Working memory: theories, models, and controversies. Annu Rev Psychol 2012, 63: 1–29.

    Article  PubMed  Google Scholar 

  3. Bai W, Liu T, Yi H, Li S, Tian X. Anticipatory activity in rat medial prefrontal cortex during a working memory task. Neurosci Bull 2012, 28: 693–703.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci 2007, 30: 535–574.

    Article  CAS  PubMed  Google Scholar 

  5. Lee D, Seo H, Jung MW. Neural basis of reinforcement learning and decision making. Annu Rev Neurosci 2012, 35: 287–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 1971, 34: 171–175.

  7. Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. Spatial representation in the entorhinal cortex. Science 2004, 305: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  8. Wood RA, Bauza M, Krupic J, Burton S, Delekate A, Chan D, et al. The honeycomb maze provides a novel test to study hippocampal-dependent spatial navigation. Nature 2018, 554: 102–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernando AB, Robbins TW. Animal models of neuropsychiatric disorders. Annu Rev Clin Psychol 2011, 7: 39–61.

    Article  CAS  PubMed  Google Scholar 

  10. Gotz J, Ittner LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Nat Rev Neurosci 2008, 9: 532–544.

    Article  CAS  PubMed  Google Scholar 

  11. Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci 2010, 13: 1161–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schaefer AT, Claridge-Chang A. The surveillance state of behavioral automation. Curr Opin Neurobiol 2012, 22: 170–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011, 34: 389–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007, 104: 5163–5168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deisseroth K, Schnitzer MJ. Engineering approaches to illuminating brain structure and dynamics. Neuron 2013, 80: 568–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Davidson AB, Davis DJ, Cook L. A rapid automatic technique for generating operant key-press behavior in rats. J Exp Anal Behav 1971, 15: 123–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benkner B, Mutter M, Ecke G, Munch TA. Characterizing visual performance in mice: an objective and automated system based on the optokinetic reflex. Behav Neurosci 2013, 127: 788–796.

    Article  PubMed  Google Scholar 

  18. de Visser L, van den Bos R, Spruijt BM. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion. Behav Brain Res 2005, 160: 382–388.

    Article  PubMed  Google Scholar 

  19. Kretschmer F, Kretschmer V, Kunze VP, Kretzberg J. OMR-arena: automated measurement and stimulation system to determine mouse visual thresholds based on optomotor responses. PLoS One 2013, 8: e78058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han Z, Zhang X, Zhu J, Chen Y, Li CT. High–throughput automatic training system for odor-based learned behaviors in head-fixed mice. Front Neural Circuits 2018, 12.

  21. Kazdoba TM, Del Vecchio RA, Hyde LA. Automated evaluation of sensitivity to foot shock in mice: inbred strain differences and pharmacological validation. Behav Pharmacol 2007, 18: 89–102.

    Article  PubMed  Google Scholar 

  22. Roughan JV, Wright-Williams SL, Flecknell PA. Automated analysis of postoperative behaviour: assessment of HomeCageScan as a novel method to rapidly identify pain and analgesic effects in mice. Lab Anim 2009, 43: 17–26.

    Article  CAS  PubMed  Google Scholar 

  23. Anagnostaras SG, Wood SC, Shuman T, Cai DJ, Leduc AD, Zurn KR, et al. Automated assessment of pavlovian conditioned freezing and shock reactivity in mice using the video freeze system. Front Behav Neurosci 2010, 4.

  24. Kopec CD, Kessels HW, Bush DE, Cain CK, LeDoux JE, Malinow R. A robust automated method to analyze rodent motion during fear conditioning. Neuropharmacology 2007, 52: 228–233.

    Article  CAS  PubMed  Google Scholar 

  25. Balci F, Oakeshott S, Shamy JL, El-Khodor BF, Filippov I, Mushlin R, et al. High-throughput automated phenotyping of two genetic mouse models of Huntington’s disease. PLoS Curr 2013, 5.

  26. Jhuang H, Garrote E, Mutch J, Yu X, Khilnani V, Poggio T, et al. Automated home-cage behavioural phenotyping of mice. Nat Commun 2010, 1: 68.

    Article  CAS  PubMed  Google Scholar 

  27. Hubener J, Casadei N, Teismann P, Seeliger MW, Bjorkqvist M, von Horsten S, et al. Automated behavioral phenotyping reveals presymptomatic alterations in a SCA3 genetrap mouse model. J Genet Genomics 2012, 39: 287–299.

    Article  CAS  PubMed  Google Scholar 

  28. Aarts E, Maroteaux G, Loos M, Koopmans B, Kovacevic J, Smit AB, et al. The light spot test: Measuring anxiety in mice in an automated home-cage environment. Behav Brain Res 2015, 294: 123–130.

    Article  PubMed  Google Scholar 

  29. Adamah-Biassi EB, Stepien I, Hudson RL, Dubocovich ML. Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice. Behav Brain Res 2013, 243: 306–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hong W, Kennedy A, Burgos-Artizzu XP, Zelikowsky M, Navonne SG, Perona P, et al. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc Natl Acad Sci U S A 2015, 112: E5351–5360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weissbrod A, Shapiro A, Vasserman G, Edry L, Dayan M, Yitzhaky A, et al. Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment. Nat Commun 2013, 4: 2018.

    Google Scholar 

  32. Ohayon S, Avni O, Taylor AL, Perona P, Roian Egnor SE. Automated multi-day tracking of marked mice for the analysis of social behaviour. J Neurosci Methods 2013, 219: 10–19.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Reiss D, Walter O, Bourgoin L, Kieffer BL, Ouagazzal AM. New automated procedure to assess context recognition memory in mice. Psychopharmacology (Berl) 2014, 231: 4337–4347.

    Article  CAS  Google Scholar 

  34. Remmelink E, Loos M, Koopmans B, Aarts E, van der Sluis S, Smit AB, et al. A 1-night operant learning task without food-restriction differentiates among mouse strains in an automated home-cage environment. Behav Brain Res 2015, 283: 53–60.

    Article  PubMed  Google Scholar 

  35. Becker AM, Meyers E, Sloan A, Rennaker R, Kilgard M, Goldberg MP. An automated task for the training and assessment of distal forelimb function in a mouse model of ischemic stroke. J Neurosci Methods 2016, 258: 16–23.

    Article  PubMed  Google Scholar 

  36. Erlich JC, Bialek M, Brody CD. A cortical substrate for memory-guided orienting in the rat. Neuron 2011, 72: 330–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Poddar R, Kawai R, Olveczky BP. A fully automated high-throughput training system for rodents. PLoS One 2013, 8: e83171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gallistel CR, Balci F, Freestone D, Kheifets A, King A. Automated, quantitative cognitive/behavioral screening of mice: for genetics, pharmacology, animal cognition and undergraduate instruction. J Vis Exp 2014: e51047.

  39. Romberg C, Horner AE, Bussey TJ, Saksida LM. A touch screen-automated cognitive test battery reveals impaired attention, memory abnormalities, and increased response inhibition in the TgCRND8 mouse model of Alzheimer’s disease. Neurobiol Aging 2013, 34: 731–744.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Spellman T, Rigotti M, Ahmari SE, Fusi S, Gogos JA, Gordon JA. Hippocampal-prefrontal input supports spatial encoding in working memory. Nature 2015, 522: 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hanks TD, Kopec CD, Brunton BW, Duan CA, Erlich JC, Brody CD. Distinct relationships of parietal and prefrontal cortices to evidence accumulation. Nature 2015, 520: 220–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunton BW, Botvinick MM, Brody CD. Rats and humans can optimally accumulate evidence for decision-making. Science 2013, 340: 95–98.

    Article  CAS  PubMed  Google Scholar 

  43. Fuster JM. The prefrontal cortex : anatomy, physiology, and neuropsychology of the frontal lobe. 3rd ed. Philadelphia: Lippincott-Raven, 1997.

    Google Scholar 

  44. Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science 1999, 283: 1657–1661.

    Article  CAS  Google Scholar 

  45. D’Esposito M, Postle BR. The cognitive neuroscience of working memory. Annu Rev Psychol 2015, 66: 115–142.

    Article  PubMed  Google Scholar 

  46. Goldman-Rakic PS. Cellular basis of working memory. Neuron 1995, 14: 477–485.

    Article  CAS  PubMed  Google Scholar 

  47. Lewis DA, Gonzalez-Burgos G. Pathophysiologically based treatment interventions in schizophrenia. Nat Med 2006, 12: 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  48. Ito HT, Zhang SJ, Witter MP, Moser EI, Moser MB. A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature 2015, 522: 50–55.

    Article  CAS  PubMed  Google Scholar 

  49. Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, et al. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci 2017, 20: 987–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 2014, 157: 845–857.

    Article  CAS  PubMed  Google Scholar 

  51. Kolb B, Nonneman AJ, Singh RK. Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. J Comp Physiol Psychol 1974, 87: 772–780.

    Article  CAS  PubMed  Google Scholar 

  52. Baeg EH, Kim YB, Huh K, Mook-Jung I, Kim HT, Jung MW. Dynamics of population code for working memory in the prefrontal cortex. Neuron 2003, 40: 177–188.

    Article  CAS  PubMed  Google Scholar 

  53. Fujisawa S, Amarasingham A, Harrison MT, Buzsaki G. Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex. Nat Neurosci 2008, 11: 823–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. Impaired hippocampal-prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 2010, 464: 763–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pioli EY, Gaskill BN, Gilmour G, Tricklebank MD, Dix SL, Bannerman D, et al. An automated maze task for assessing hippocampus-sensitive memory in mice. Behav Brain Res 2014, 261: 249–257.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rawlins JN, Maxwell TJ, Sinden JD. The effects of fornix section on win-stay/lose-shift and win-shift/lose-stay performance in the rat. Behav Brain Res 1988, 31: 17–28.

    Article  CAS  PubMed  Google Scholar 

  57. McDaniel WF, Jones PD, Weaver TL. Medial frontal lesions, postoperative treatment with an ACTH(4–9) analog, and acquisition of a win-shift spatial strategy. Behav Brain Res 1991, 44: 107–112.

    Article  CAS  PubMed  Google Scholar 

  58. Ritzmann RF, Kling A, Melchior CL, Glasky AJ. Effect of age and strain on working memory in mice as measured by win-shift paradigm. Pharmacol Biochem Behav 1993, 44: 805–807.

    Article  CAS  PubMed  Google Scholar 

  59. Randall CK, Zentall TR. Win-stay/lose-shift and win-shift/lose-stay learning by pigeons in the absence of overt response mediation. Behav Processes 1997, 41: 227–236.

    Article  CAS  PubMed  Google Scholar 

  60. Sage JR, Knowlton BJ. Effects of US devaluation on win-stay and win-shift radial maze performance in rats. Behav Neurosci 2000, 114: 295–306.

    Article  CAS  PubMed  Google Scholar 

  61. Taylor CL, Latimer MP, Winn P. Impaired delayed spatial win-shift behaviour on the eight arm radial maze following excitotoxic lesions of the medial prefrontal cortex in the rat. Behav Brain Res 2003, 147: 107–114.

    Article  PubMed  Google Scholar 

  62. Olton DS, Schlosberg P. Food-searching strategies in young rats: Win-shift predominates over win-stay. J Comp Physiol Psychol 1978, 92: 609–618.

    Article  Google Scholar 

  63. Taube JS, Muller RU, Ranck JB, Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 1990, 10: 420–435.

  64. Taube JS, Muller RU, Ranck JB, Jr. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 1990, 10: 436–447.

  65. Kropff E, Carmichael JE, Moser MB, Moser EI. Speed cells in the medial entorhinal cortex. Nature 2015, 523: 419–424.

    Article  CAS  PubMed  Google Scholar 

  66. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature 2005, 436: 801–806.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by the Instrument Developing Project of the Chinese Academy of Sciences (YZ201540), the National Science Foundation for Distinguished Young Scholars of China (31525010), the General Program of the National Science Foundation of China (31471049), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (QYZDB-SSW-SMC009), China – Netherlands CAS-NWO Programme: Joint Research Projects, The Future of Brain and Cognition (153D31KYSB20160106), the Key Project of Shanghai Science and Technology Commission (15JC1400102, 16JC1400101), and the State Key Laboratory of Neuroscience, China. We thank Xuehan Zhou and Dr. Ding Liu for assistance with designing the system and for training protocol optimization, and Dr. Xiaoxing Zhang for suggestions about programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyu Tony Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, S., Li, C.T. High-Throughput Automatic Training System for Spatial Working Memory in Free-Moving Mice. Neurosci. Bull. 35, 389–400 (2019). https://doi.org/10.1007/s12264-019-00370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-019-00370-z

Keywords

Navigation