Skip to main content
Log in

Anticipatory activity in rat medial prefrontal cortex during a working memory task

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Objective

Working memory is a key cognitive function in which the prefrontal cortex plays a crucial role. This study aimed to show the firing patterns of a neuronal population in the prefrontal cortex of the rat in a working memory task and to explore how a neuronal ensemble encodes a working memory event.

Methods

Sprague-Dawley rats were trained in a Y-maze until they reached an 80% correct rate in a working memory task. Then a 16-channel microelectrode array was implanted in the prefrontal cortex. After recovery, neuronal population activity was recorded during the task, using the Cerebus data-acquisition system. Spatio-temporal trains of action potentials were obtained from the original neuronal population signals.

Results

During the Y-maze working memory task, some neurons showed significantly increased firing rates and evident neuronal ensemble activity. Moreover, the anticipatory activity was associated with the delayed alternate choice of the upcoming movement. In correct trials, the averaged pre-event firing rate (10.86 ± 1.82 spikes/bin) was higher than the post-event rate (8.17 ± 1.15 spikes/bin) (P<0.05). However, in incorrect trials, the rates did not differ.

Conclusion

The results indicate that the anticipatory activity of a neuronal ensemble in the prefrontal cortex may play a role in encoding working memory events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci 2003, 4: 829–839.

    Article  PubMed  CAS  Google Scholar 

  2. Curtis CE, D’Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 2003, 7: 415–423.

    Article  PubMed  Google Scholar 

  3. Fuster JM. The prefrontal cortex—an update: time is of the essence. Neuron 2001, 30: 319–333.

    Article  PubMed  CAS  Google Scholar 

  4. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001, 24: 167–202.

    Article  PubMed  CAS  Google Scholar 

  5. Barbas H. Complementary roles of prefrontal cortical regions in cognition, memory, and emotion in primates. Adv Neurol 2000, 84: 87–110.

    PubMed  CAS  Google Scholar 

  6. Kolb B. Animal models for human PFC-related disorders. Prog Brain Res 1990, 85: 501–519.

    Article  PubMed  CAS  Google Scholar 

  7. Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 2000, 10: 206–219.

    Article  PubMed  CAS  Google Scholar 

  8. Petrides M. Specialized systems for the processing of mnemonic information within the primate frontal cortex. in: Roberts AC, Robbins TW, Weiskrantz L (Eds.). The Prefrontal Cortex, Executive and Cognitive Functions. New York: oxford University Press, 1998: 103–116.

    Chapter  Google Scholar 

  9. Miller EK. The prefrontal cortex and cognitive control. Nat Rev Neurosci 2000, 1: 59–65.

    Article  PubMed  CAS  Google Scholar 

  10. Vertes RP. interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 2006, 142: 1–20.

    Article  PubMed  CAS  Google Scholar 

  11. Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003, 27: 555–579.

    Article  PubMed  Google Scholar 

  12. JL P. The Rat Nervous System. New York: Academic Press, 1995: 629–648.

    Google Scholar 

  13. Brito GN, Brito LS. Septohippocampal system and the prelimbic sector of frontal cortex: a neuropsychological battery analysis in the rat. Behav Brain Res 1990, 36: 127–146.

    Article  PubMed  CAS  Google Scholar 

  14. Dalley JW, Cardinal RN, Robbins TW. Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 2004, 28: 771–784.

    Article  PubMed  CAS  Google Scholar 

  15. Delatour B, Gisquet-Verrier P. Functional role of rat prelimbicinfralimbic cortices in spatial memory: evidence for their involve ment in attention and behavioural flexibility. Behav Brain Res 2000, 109: 113–128.

    Article  PubMed  CAS  Google Scholar 

  16. Di Pietro NC, Black YD, Green-Jordan K, Eichenbaum HB, Kantak KM. Complementary tasks to measure working memory in distinct prefrontal cortex subregions in rats. Behav Neurosci 2004, 118: 1042–1051.

    Article  PubMed  Google Scholar 

  17. Horst NK, Laubach M. The role of rat dorsomedial prefrontal cortex in spatial working memory. Neuroscience 2009, 164: 444–456.

    Article  PubMed  CAS  Google Scholar 

  18. Lee I, Kesner RP. Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J Neurosci 2003, 23: 1517–1523.

    PubMed  CAS  Google Scholar 

  19. Ragozzino ME, Detrick S, Kesner RP. The effects of prelimbic and infralimbic lesions on working memory for visual objects in rats. Neurobiol Learn Mem 2002, 77: 29–43.

    Article  PubMed  Google Scholar 

  20. Seamans JK, Floresco SB, Phillips AG. Functional differences between the prelimbic and anterior cingulate regions of the rat prefrontal cortex. Behav Neurosci 1995, 109: 1063–1073.

    Article  PubMed  CAS  Google Scholar 

  21. Laroche S, Davis S, Jay TM. Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 2000, 10: 438–446.

    Article  PubMed  CAS  Google Scholar 

  22. Repovs G, Baddeley A. The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience 2006, 139: 5–21.

    Article  PubMed  CAS  Google Scholar 

  23. Buzsaki G. Large-scale recording of neuronal ensembles. Nat Neurosci 2004, 7: 446–451.

    Article  PubMed  CAS  Google Scholar 

  24. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009, 459: 663–667.

    Article  PubMed  CAS  Google Scholar 

  25. Nicolelis MA, Baccala LA, Lin RC, Chapin JK. Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 1995, 268: 1353–1358.

    Article  PubMed  CAS  Google Scholar 

  26. Pouget A, Dayan P, Zemel RS. Inference and computation with population codes. Annu Rev Neurosci 2003, 26: 381–410.

    Article  PubMed  CAS  Google Scholar 

  27. Sumbre G, Muto A, Baier H, Poo MM. Entrained rhythmic activities of neuronal ensembles as perceptual memory of time interval. Nature 2008, 456: 102–106.

    Article  PubMed  CAS  Google Scholar 

  28. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, et al. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 2000, 408: 361–365.

    Article  PubMed  CAS  Google Scholar 

  29. Baeg EH, Kim YB, Huh K, Mook-Jung I, Kim HT, Jung MW. Dynamics of population code for working memory in the prefrontal cortex. Neuron 2003, 40: 177–188.

    Article  PubMed  CAS  Google Scholar 

  30. Nicolelis MA, Ghazanfar AA, Faggin BM, Votaw S, Oliveira LM. Reconstructing the engram: simultaneous, multisite, many single neuron recordings. Neuron 1997, 18: 529–537.

    Article  PubMed  CAS  Google Scholar 

  31. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442: 164–171.

    Article  PubMed  CAS  Google Scholar 

  32. Asaad WF, Eskandar EN. Encoding of both positive and negative reward prediction errors by neurons of the primate lateral prefrontal cortex and caudate nucleus. J Neurosci 2011, 31: 17772–17787.

    Article  PubMed  CAS  Google Scholar 

  33. Bialleck KA, Schaal HP, Kranz TA, Fell J, Elger CE, Axmacher N. Ventromedial prefrontal cortex activation is associated with memory formation for predictable rewards. PLoS one 2011, 6: e16695.

    Article  PubMed  CAS  Google Scholar 

  34. Kennerley SW, Wallis JD. Reward-dependent modulation of working memory in lateral prefrontal cortex. J Neurosci 2009, 29: 3259–3270.

    Article  PubMed  CAS  Google Scholar 

  35. Krawczyk DC, Gazzaley A, D’Esposito M. Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Res 2007, 1141: 168–177.

    Article  PubMed  CAS  Google Scholar 

  36. Roesch MR, Olson CR. Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J Neurophysiol 2003, 90: 1766–1789.

    Article  PubMed  Google Scholar 

  37. Tsujimoto S, Sawaguchi T. Neuronal activity representing temporal prediction of reward in the primate prefrontal cortex. J Neurophysiol 2005, 93: 3687–3692.

    Article  PubMed  Google Scholar 

  38. Day JJ, Jones JL, Carelli RM. Nucleus accumbens neurons encode predicted and ongoing reward costs in rats. Eur J Neurosci 2011, 33: 308–321.

    Article  PubMed  Google Scholar 

  39. Batuev AS, Kursina NP, Shutov AP. Unit activity of the medial wall of the frontal cortex during delayed performance in rats. Behav Brain Res 1990, 41: 95–102.

    Article  PubMed  CAS  Google Scholar 

  40. Orlov AA, Kurzina NP, Shutov AP. Activity of medial wall neurons in frontal cortex of rat brain during delayed response reactions. Neurosci Behav Physiol 1988, 18: 31–37.

    Article  PubMed  CAS  Google Scholar 

  41. Pratt WE, Mizumori SJ. Neurons in rat medial prefrontal cortex show anticipatory rate changes to predictable differential rewards in a spatial memory task. Behav Brain Res 2001, 123:165–183.

    Article  PubMed  CAS  Google Scholar 

  42. Funahashi S, Bruce CJ, Goldman-Rakic PS. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic “scotomas”. J Neurosci 1993, 13: 1479–1497.

    PubMed  CAS  Google Scholar 

  43. Goldman PS, Rosvold HE. Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. Exp Neurol 1970, 27: 291–304.

    Article  PubMed  CAS  Google Scholar 

  44. Petrides M. Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. J Neurosci 2000, 20: 7496–7503.

    PubMed  CAS  Google Scholar 

  45. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 1989, 61: 331–349.

    PubMed  CAS  Google Scholar 

  46. Kojima S, Goldman-Rakic PS. Delay-related activity of prefrontal neurons in rhesus monkeys performing delayed response. Brain Res 1982, 248: 43–49.

    Article  PubMed  CAS  Google Scholar 

  47. Miller EK, Erickson CA, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 1996, 16: 5154–5167.

    PubMed  CAS  Google Scholar 

  48. Sawaguchi T, Yamane I. Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task. J Neurophysiol 1999, 82: 2070–2080.

    PubMed  CAS  Google Scholar 

  49. Chafee MV, Goldman-Rakic PS. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 1998, 79: 2919–2940.

    PubMed  CAS  Google Scholar 

  50. Fuster JM, Alexander GE. Neuron activity related to short-term memory. Science 1971, 173: 652–654.

    Article  PubMed  CAS  Google Scholar 

  51. Kubota K, Niki H. Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 1971, 34: 337–347.

    PubMed  CAS  Google Scholar 

  52. Courtney SM, Petit L, Maisog JM, Ungerleider LG, Haxby JV. An area specialized for spatial working memory in human frontal cortex. Science 1998, 279: 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  53. Jha AP, McCarthy G. The influence of memory load upon delayinterval activity in a working-memory task: an event-related functional MRI study. J Cogn Neurosci 2000, 12(Suppl 2): 90–105.

    Article  PubMed  Google Scholar 

  54. Sakai K, Rowe JB, Passingham RE. Active maintenance in prefrontal area 46 creates distractor-resistant memory. Nat Neurosci 2002, 5: 479–484.

    PubMed  CAS  Google Scholar 

  55. Womelsdorf T, Fries P, Mitra PP, Desimone R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 2006, 439: 733–736.

    Article  PubMed  CAS  Google Scholar 

  56. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat Neurosci 2002, 5: 805–811.

    Article  PubMed  CAS  Google Scholar 

  57. Lu X, Ashe J. Anticipatory activity in primary motor cortex codes memorized movement sequences. Neuron 2005, 45: 967–973.

    Article  PubMed  CAS  Google Scholar 

  58. Asaad WF, Rainer G, Miller EK. Neural activity in the primate prefrontal cortex during associative learning. Neuron 1998, 21: 1399–1407.

    Article  PubMed  CAS  Google Scholar 

  59. Pasupathy A, Miller EK. Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature 2005, 433: 873–876.

    Article  PubMed  CAS  Google Scholar 

  60. Mitz AR, Godschalk M, Wise SP. Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J Neurosci 1991, 11: 1855–1872.

    PubMed  CAS  Google Scholar 

  61. Chen LL, Wise SP. Conditional oculomotor learning: population vectors in the supplementary eye field. J Neurophysiol 1997, 78: 1166–1169.

    PubMed  CAS  Google Scholar 

  62. Averbeck BB, Latham PE, Pouget A. Neural correlations, population coding and computation. Nat Rev Neurosci 2006, 7: 358–366.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, W., Liu, T., Yi, H. et al. Anticipatory activity in rat medial prefrontal cortex during a working memory task. Neurosci. Bull. 28, 693–703 (2012). https://doi.org/10.1007/s12264-012-1291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1291-x

Keywords

Navigation