Skip to main content
Log in

The Antidepressant Effect of Light Therapy from Retinal Projections

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Observations from clinical trials have frequently demonstrated that light therapy can be an effective therapy for seasonal and non-seasonal major depression. Despite the fact that light therapy is known to have several advantages over antidepressant drugs like a low cost, minimal side-effects, and fast onset of therapeutic effect, the mechanism underlying light therapy remains unclear. So far, it is known that light therapy modulates mood states and cognitive functions, involving circadian and non-circadian pathways from retinas into brain. In this review, we discuss the therapeutic effect of light on major depression and its relationship to direct retinal projections in the brain. We finally emphasize the function of the retino-raphe projection in modulating serotonin activity, which probably underlies the antidepressant effect of light therapy for depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. LeGates TA, Fernandez DC, Hattar S. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 2014, 15: 443–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain function. Trends Cogn Sci 2009, 13: 429–438.

    Article  PubMed  Google Scholar 

  3. Kolb H. Simple Anatomy of the Retina. In: Kolb H, Fernandez E, Nelson R (Eds.). Webvision: The Organization of the Retina and Visual System [Internet]. Salt Lake City (UT): University of Utah Health Sciences Center, 1995.

    Google Scholar 

  4. Masland RH. The neuronal organization of the retina. Neuron 2012, 76: 266–280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pail G, Huf W, Pjrek E, Winkler D, Willeit M, Praschak-Rieder N, et al. Bright-light therapy in the treatment of mood disorders. Neuropsychobiology 2011, 64: 152–162.

    Article  CAS  PubMed  Google Scholar 

  6. Kripke D. Light treatment for nonseasonal depression: speed, efficacy, and combined treatment. J Affect Disord 1998, 49: 109–117.

    Article  CAS  PubMed  Google Scholar 

  7. Kripke DF, Risch SC, Janowsky D. Bright white light alleviates depression. Psychiatry Res 1983, 10: 105–112.

    Article  CAS  PubMed  Google Scholar 

  8. Prasko J, Foldmann P, Praskova H, Zindr V. Hastening the onset of the effect of antidepressive agents during the use of 3 different time periods of exposure to intensive white light. Cesk Psychiatr 1988, 84: 374–383.

    CAS  PubMed  Google Scholar 

  9. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380: 2163–2196.

    Article  PubMed  Google Scholar 

  10. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: Results from the national comorbidity survey replication (ncs-r). JAMA 2003, 289: 3095–3105.

    Article  PubMed  Google Scholar 

  11. Lopez AD, Murray CC. The global burden of disease, 1990-2020. Nat Med 1998, 4: 1241–1243.

    Article  CAS  PubMed  Google Scholar 

  12. Pincus HA, Pettit AR. The societal costs of chronic major depression. J Clin Psychiatry 2001, 62 (Suppl 6): 5–9.

    PubMed  Google Scholar 

  13. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008, 455: 894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 2012, 35: 47–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belmaker RH, Agam G. Major depressive disorder. N Engl J Med 2008, 358: 55–68.

    Article  CAS  PubMed  Google Scholar 

  16. Masand PS, Gupta S. Long-term side effects of newer-generation antidepressants: SSRIS, venlafaxine, nefazodone, bupropion, and mirtazapine. Ann Clin Psychiatry 2002, 14: 175–182.

    Article  PubMed  Google Scholar 

  17. Kripke DF, Mullaney DJ, Klauber MR, Risch SC, Gillin JC. Controlled trial of bright light for nonseasonal major depressive disorders. Biol Psychiatry 1992, 31: 119–134.

    Article  CAS  PubMed  Google Scholar 

  18. Terman M, Terman JS, Ross DC. A controlled trial of timed bright light and negative air ionization for treatment of winter depression. Arch Gen Psychiatry 1998, 55: 875–882.

    Article  CAS  PubMed  Google Scholar 

  19. Terman M, Terman JS. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectr 2005, 10: 647–663; quiz 672.

  20. Lieverse R, Van Someren EJ, Nielen MM, Uitdehaag BM, Smit JH, Hoogendijk WJ. Bright light treatment in elderly patients with nonseasonal major depressive disorder: a randomized placebo-controlled trial. Arch Gen Psychiatry 2011, 68: 61–70.

    Article  PubMed  Google Scholar 

  21. Niederhofer H, von Klitzing K. Bright light treatment as mono-therapy of non-seasonal depression for 28 adolescents. Int J Psychiatry Clin Pract 2012, 16: 233–237.

    Article  CAS  PubMed  Google Scholar 

  22. Terman M. Evolving applications of light therapy. Sleep Med Rev 2007, 11: 497–507.

    Article  PubMed  Google Scholar 

  23. Wirz-Justice A, Bader A, Frisch U, Stieglitz RD, Alder J, Bitzer J, et al. A randomized, double-blind, placebo-controlled study of light therapy for antepartum depression. J Clin Psychiatry 2011, 72: 986–993.

    Article  PubMed  Google Scholar 

  24. Sit D, Wisner KL, Hanusa BH, Stull S, Terman M. Light therapy for bipolar disorder: a case series in women. Bipolar Disord 2007, 9: 918–927.

    Article  PubMed  Google Scholar 

  25. Stephenson KM, Schroder CM, Bertschy G, Bourgin P. Complex interaction of circadian and non-circadian effects of light on mood: shedding new light on an old story. Sleep Med Rev 2012, 16: 445–454.

    Article  PubMed  Google Scholar 

  26. Iyilikci O, Aydin E, Canbeyli R. Blue but not red light stimulation in the dark has antidepressant effect in behavioral despair. Behav Brain Res 2009, 203: 65–68.

    Article  PubMed  Google Scholar 

  27. Einat H, Kronfeld-Schor N, Eilam D. Sand rats see the light: short photoperiod induces a depression-like response in a diurnal rodent. Behav Brain Res 2006, 173: 153–157.

    Article  PubMed  Google Scholar 

  28. Gonzalez M, Aston-Jones G. Light deprivation damages monoamine neurons and produces a depressive behavioral phenotype in rats. Proc Natl Acad Sci U S A 2008, 105: 4898–4903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krivisky K, Einat H, Kronfeld-Schor N. Effects of morning compared with evening bright light administration to ameliorate short-photoperiod induced depression- and anxiety-like behaviors in a diurnal rodent model. J Neural Transm 2012, 119: 1241–1248.

    Article  PubMed  Google Scholar 

  30. Ashkenazy T, Einat H, Kronfeld-Schor N. Effects of bright light treatment on depression- and anxiety-like behaviors of diurnal rodents maintained on a short daylight schedule. Behav Brain Res 2009, 201: 343–346.

    Article  PubMed  Google Scholar 

  31. Dimatelis JJ, Stein DJ, Russell VA. Behavioral changes after maternal separation are reversed by chronic constant light treatment. Brain Res 2012, 1480: 61–71.

    Article  CAS  PubMed  Google Scholar 

  32. Bedrosian TA, Nelson RJ. Influence of the modern light environment on mood. Mol Psychiatry 2013, 18: 751–757.

    Article  CAS  PubMed  Google Scholar 

  33. Bedrosian TA, Fonken LK, Walton JC, Haim A, Nelson RJ. Dim light at night provokes depression-like behaviors and reduces CA1 dendritic spine density in female hamsters. Psychoneuroendocrinology 2011, 36: 1062–1069.

    Article  PubMed  Google Scholar 

  34. Fonken LK, Haim A, Nelson RJ. Dim light at night increases immune function in Nile grass rats, a diurnal rodent. Chronobiol Int 2012, 29: 26–34.

    Article  PubMed  Google Scholar 

  35. Fonken LK, Nelson RJ. Dim light at night increases depressive-like responses in male C3H/HeNHsd mice. Behav Brain Res 2013, 243: 74–78.

    Article  PubMed  Google Scholar 

  36. LeGates TA, Altimus CM, Wang H, Lee HK, Yang S, Zhao H, et al. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 2012, 491: 594–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodieck RW. The Vertebrate Retina: Principles of Structure and Function. San Francisco: W. H. Freeman and Company, 1973.

    Google Scholar 

  38. Berson D. Retinal ganglion cell types and their central projections. In: Basbaum AI, Kaneko A, et al. (Eds.). The Senses: A Comprehensive Reference. Academic Press, 2008, 1: 491–520.

  39. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Ann Rev Physiol 2010, 72: 551–577.

    Article  CAS  Google Scholar 

  40. Pickard GE, Sollars PJ. Intrinsically photosensitive retinal ganglion cells. Rev Physiol Biochem Pharmacol 2012, 162: 59–90.

    CAS  PubMed  Google Scholar 

  41. Baver SB, Pickard GE, Sollars PJ, Pickard GE. Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 2008, 27: 1763–1770.

    Article  PubMed  Google Scholar 

  42. Gooley JJ, Lu J, Fischer D, Saper CB. A broad role for melanopsin in nonvisual photoreception. J Neurosci 2003, 23: 7093–7106.

    CAS  PubMed  Google Scholar 

  43. Morin LP, Blanchard JH, Provencio I. Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol.2003, 465: 401–416.

    Article  PubMed  Google Scholar 

  44. Sollars PJ, Smeraski CA, Kaufman JD, Ogilvie MD, Provencio I, Pickard GE. Melanopsin and non-melanopsin expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci 2003, 20: 601–610.

    Article  PubMed  Google Scholar 

  45. Abrahamson EE, Moore RY. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 2001, 916: 172–191.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson RF, Morin LP, Moore RY. Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin. Brain Res 1988, 462: 301–312.

    Article  CAS  PubMed  Google Scholar 

  47. Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol 2014, 522: 2231–2248.

    Article  CAS  PubMed  Google Scholar 

  48. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, et al. Central projections of melanopsin- expressing retinal ganglion cells in the mouse. J Comp Neurol 2006, 497: 326–349.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Monteleone P, Maj M. The circadian basis of mood disorders: Recent developments and treatment implications. Eur Neuropsychopharmacol 2008, 18: 701–711.

    Article  CAS  PubMed  Google Scholar 

  50. McCarthy MJ, Welsh DK. Cellular circadian clocks in mood disorders. J Biol Rhythms 2012, 27: 339–352.

    Article  CAS  PubMed  Google Scholar 

  51. Tataroglu O, Aksoy A, Yilmaz A, Canbeyli R. Effect of lesioning the suprachiasmatic nuclei on behavioral despair in rats. Brain Res 2004, 1001: 118–124.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou JN, Riemersma RF, Unmehopa UA, Hoogendijk WJ, van Heerikhuize JJ, Hofman MA, et al. Alterations in arginine vasopressin neurons in the suprachiasmatic nucleus in depression. Arch Gen Psychiatry 2001, 58: 655–662.

    Article  CAS  PubMed  Google Scholar 

  53. Wang LM, Dragich JM, Kudo T, Odom IH, Welsh DK, O’Dell TJ, et al. Expression of the circadian clock gene Period2 in the hippocampus: possible implications for synaptic plasticity and learned behaviour. ASN Neuro 2009, 1. pii: e00012. https://doi.org/10.1042/an20090020.

  54. Zhao H, Rusak B. Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience 2005, 132: 519–528.

    Article  CAS  PubMed  Google Scholar 

  55. Fite KV, Wu PS, Bellemer A. Photostimulation alters c-Fos expression in the dorsal raphe nucleus. Brain Res 2005, 1031: 245–252.

    Article  CAS  PubMed  Google Scholar 

  56. Mick G, Cooper H, Magnin M. Retinal projection to the olfactory tubercle and basal telencephalon in primates. J Comp Neurol 1993, 327: 205–219.

    Article  CAS  PubMed  Google Scholar 

  57. Johnson RF, Morin LP, Moore RY. Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin. Brain Res 1988, 462: 301–312.

    Article  CAS  PubMed  Google Scholar 

  58. Levine JD, Weiss ML, Rosenwasser AM, Miselis RR. Retinohypothalamic tract in the female albino rat: a study using horseradish peroxidase conjugated to cholera toxin. J Comp Neurol 1991, 306: 344–360.

    Article  CAS  PubMed  Google Scholar 

  59. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 2006, 497: 326–349.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Morin LP, Studholme KM. Retinofugal projections in the mouse. J Comp Neurol 2014, 522: 3733–3753.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Gaillard F, Karten HJ, Sauve Y. Retinorecipient areas in the diurnal murine rodent Arvicanthis niloticus: a disproportionally large superior colliculus. J Comp Neurol 2013, 521: 1699–1726.

    Article  CAS  PubMed  Google Scholar 

  62. Goddard GV. Functions of the amygdala. Psychol Bull 1964, 62: 89–109.

    Article  CAS  PubMed  Google Scholar 

  63. Davis M. Neurobiology of fear responses: the role of the amygdala. J Neuropsychiatry Clin Neurosci 1997, 9: 382–402.

    Article  CAS  PubMed  Google Scholar 

  64. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005, 48: 175–187.

    Article  CAS  PubMed  Google Scholar 

  65. LeDoux J. The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 2003, 23: 727–738.

    Article  PubMed  Google Scholar 

  66. Lorenzetti V, Allen NB, Whittle S, Yucel M. Amygdala volumes in a sample of current depressed and remitted depressed patients and healthy controls. J Affect Disord 2010, 120: 112–119.

    Article  PubMed  Google Scholar 

  67. Beesdo K, Lau JY, Guyer AE, McClure-Tone EB, Monk CS, Nelson EE, et al. Common and distinct amygdala-function perturbations in depressed vs anxious adolescents. Arch Gen Psychiatry 2009, 66: 275–285.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lau JY, Goldman D, Buzas B, Fromm SJ, Guyer AE, Hodgkinson C, et al. Amygdala function and 5-HTT gene variants in adolescent anxiety and major depressive disorder. Biol Psychiatry 2009, 65: 349–355.

    Article  CAS  PubMed  Google Scholar 

  69. Tasan RO, Nguyen NK, Weger S, Sartori SB, Singewald N, Heilbronn R, et al. The central and basolateral amygdala are critical sites of neuropeptide Y/Y2 receptor-mediated regulation of anxiety and depression. J Neurosci 2010, 30: 6282–6290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mineur YS, Taylor SR, Picciotto MR. Calcineurin downregulation in the amygdala is sufficient to induce anxiety-like and depression-like behaviors in C57BL/6J male mice. Biol Psychiatry 2014, 75: 991–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wallace TL, Stellitano KE, Neve RL, Duman RS. Effects of cyclic adenosine monophosphate response element binding protein overexpression in the basolateral amygdala on behavioral models of depression and anxiety. Biol Psychiatry 2004, 56: 151–160.

    Article  CAS  PubMed  Google Scholar 

  72. Tye KM, Prakash R, Kim SY, Fenno LE, Grosenick L, Zarabi H, et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 2011, 471: 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Itaya S, Van Hoesen G, Benevento L. Direct retinal pathways to the limbic thalamus of the monkey. Exp Brain Res 1986, 61: 607–613.

    Article  CAS  PubMed  Google Scholar 

  74. Youngstrom T, Weiss M, Nunez A. Retinofugal projections to the hypothalamus, anterior thalamus and basal forebrain in hamsters. Brain Res Bull 1991, 26: 403–411.

    Article  CAS  PubMed  Google Scholar 

  75. Cooper HM, Herbin M, Nevo E. Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J Comp Neurol 1993, 328: 313–350.

    Article  CAS  PubMed  Google Scholar 

  76. Jennings JH, Sparta DR, Stamatakis AM, Ung RL, Pleil KE, Kash TL, et al. Distinct extended amygdala circuits for divergent motivational states. Nature 2013, 496: 224–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Somerville LH, Whalen PJ, Kelley WM. Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol Psychiatry 2010, 68: 416–424.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 2007, 27: 2025–2034.

    Article  CAS  PubMed  Google Scholar 

  79. Brown ES, Rush AJ, McEwen BS. Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 1999, 21: 474–484.

    Article  CAS  PubMed  Google Scholar 

  80. Crestani CC, Alves FH, Correa FM, Guimaraes FS, Joca SR. Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test. Behav Brain Funct 2010, 6: 30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nagai MM, Gomes FV, Crestani CC, Resstel LB, Joca SR. Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test. Behav Pharmacol 2013, 24: 214–221.

    Article  CAS  PubMed  Google Scholar 

  82. Pezuk P, Aydin E, Aksoy A, Canbeyli R. Effects of BNST lesions in female rats on forced swimming and navigational learning. Brain Res 2008, 1228: 199–207.

    Article  CAS  PubMed  Google Scholar 

  83. Pezuk P, Goz D, Aksoy A, Canbeyli R. BNST lesions aggravate behavioral despair but do not impair navigational learning in rats. Brain Res Bull 2006, 69: 416–421.

    Article  PubMed  Google Scholar 

  84. Schulz D, Canbeyli RS. Lesion of the bed nucleus of the stria terminalis enhances learned despair. Brain Res Bull 2000, 52: 83–87.

    Article  CAS  PubMed  Google Scholar 

  85. Sparta DR, Jennings JH, Ung RL, Stuber GD. Optogenetic strategies to investigate neural circuitry engaged by stress. Behav Brain Res 2013, 255: 19–25.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Herkenham M, Nauta WJ. Efferent connections of the habenular nuclei in the rat. J Comp Neurol 1979, 187: 19–47.

    Article  CAS  PubMed  Google Scholar 

  87. Amat J, Sparks PD, Matus-Amat P, Griggs J, Watkins LR, Maier SF. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res 2001, 917: 118–126.

    Article  CAS  PubMed  Google Scholar 

  88. Christoph GR, Leonzio RJ, Wilcox KS. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J Neurosci 1986, 6: 613–619.

    CAS  PubMed  Google Scholar 

  89. Qu T, Dong K, Sugioka K, Yamadori T. Demonstration of direct input from the retina to the lateral habenular nucleus in the albino rat. Brain Res 1996, 709: 251–258.

    Article  CAS  PubMed  Google Scholar 

  90. Matsumoto M, Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 2007, 447: 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  91. Li B, Piriz J, Mirrione M, Chung C, Proulx CD, Schulz D, et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 2011, 470: 535–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hikosaka O. The habenula: from stress evasion to value-based decision-making. Nat Rev Neurosci 2010, 11: 503–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 2010, 67: e9–e11.

    Article  PubMed  Google Scholar 

  94. Foote WE, Taber-Pierce E, Edwards L. Evidence for a retinal projection to the midbrain raphe of the cat. Brain Res 1978, 156: 135–140.

    Article  CAS  PubMed  Google Scholar 

  95. Shen H, Semba K. A direct retinal projection to the dorsal raphe nucleus in the rat. Brain Res 1994, 635: 159–168.

    Article  CAS  PubMed  Google Scholar 

  96. Fite KV, Janusonis S, Foote W, Bengston L. Retinal afferents to the dorsal raphe nucleus in rats and Mongolian gerbils. J Comp Neurol 1999, 414: 469–484.

    Article  CAS  PubMed  Google Scholar 

  97. Luan L, Ren C, Lau BW, Yang J, Pickard GE, So KF, et al. Y-like retinal ganglion cells innervate the dorsal raphe nucleus in the Mongolian gerbil (Meriones unguiculatus). PLoS One 2011, 6: e18938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Reuss S, Fuchs E. Anterograde tracing of retinal afferents to the tree shrew hypothalamus and raphe. Brain Res 2000, 874: 66–74.

    Article  CAS  PubMed  Google Scholar 

  99. Fite KV, Janusonis S. Retinal projection to the dorsal raphe nucleus in the Chilean degus (Octodon degus). Brain Res 2001, 895: 139–145.

    Article  CAS  PubMed  Google Scholar 

  100. Frazao R, Pinato L, da Silva AV, Britto LR, Oliveira JA, Nogueira MI. Evidence of reciprocal connections between the dorsal raphe nucleus and the retina in the monkey Cebus apella. Neurosci Lett 2008, 430: 119–123.

    Article  CAS  PubMed  Google Scholar 

  101. Vandewalle G, Schmidt C, Albouy G, Sterpenich V, Darsaud A, Rauchs G, et al. Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS One 2007, 2: e1247.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Shibata M, Goto N, Goto J, Nonaka N. Nuclei of the human raphe. Okajimas Folia Anat Jpn 2012, 89: 15–22.

    Article  PubMed  Google Scholar 

  103. Lambert GW, Reid C, Kaye DM, Jennings GL, Esler MD. Effect of sunlight and season on serotonin turnover in the brain. Lancet 2002, 360: 1840–1842.

    Article  CAS  PubMed  Google Scholar 

  104. Praschak-Rieder N, Willeit M, Wilson AA, Houle S, Meyer JH. Seasonal variation in human brain serotonin transporter binding. Arch Gen Psychiatry 2008, 65: 1072–1078.

    Article  PubMed  Google Scholar 

  105. Glass JD, DiNardo LA, Ehlen JC. Dorsal raphe nuclear stimulation of SCN serotonin release and circadian phase-resetting. Brain Res 2000, 859: 224–232.

    Article  CAS  PubMed  Google Scholar 

  106. Stephenson KM, Schroder CM, Bertschy G, Bourgin P. Complex interaction of circadian and non-circadian effects of light on mood: Shedding new light on an old story. Sleep Med Rev 2012, 16: 445–454.

    Article  PubMed  Google Scholar 

  107. Hercher C, Turecki G, Mechawar N. Through the looking glass: examining neuroanatomical evidence for cellular alterations in major depression. J Psychiatr Res 2009, 43: 947–961.

    Article  PubMed  Google Scholar 

  108. Michelsen KA, Schmitz C, Steinbusch HW. The dorsal raphe nucleus—from silver stainings to a role in depression. Brain Res Rev 2007, 55: 329–342.

    Article  PubMed  Google Scholar 

  109. Jasinska AJ, Lowry CA, Burmeister M. Serotonin transporter gene, stress and raphe-raphe interactions: a molecular mechanism of depression. Trends Neurosci 2012, 35: 395–402.

    Article  CAS  PubMed  Google Scholar 

  110. Tork I. Anatomy of the serotonergic system. Ann N Y Acad Sci 1990, 600: 9–34; discussion 34–35.

  111. Boldrini M, Underwood MD, Mann JJ, Arango V. More tryptophan hydroxylase in the brainstem dorsal raphe nucleus in depressed suicides. Brain Res 2005, 1041: 19–28.

    Article  CAS  PubMed  Google Scholar 

  112. Baumann B, Bielau H, Krell D, Agelink MW, Diekmann S, Wurthmann C, et al. Circumscribed numerical deficit of dorsal raphe neurons in mood disorders. Psychol Med 2002, 32: 93–103.

    Article  CAS  PubMed  Google Scholar 

  113. Adidharma W, Leach G, Yan L. Orexinergic signaling mediates light-induced neuronal activation in the dorsal raphe nucleus. Neuroscience 2012, 220: 201–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ren C, Luan L, Wui-Man Lau B, Huang X, Yang J, Zhou Y, et al. Direct retino-raphe projection alters serotonergic tone and affective behavior. Neuropsychopharmacology 2013, 38: 1163–1175.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li X, Ren C, Huang L, Lin B, Pu M, Pickard GE, et al. The dorsal raphe nucleus receives afferents from alpha-like retinal ganglion cells and intrinsically photosensitive retinal ganglion cells in the rat. Invest Ophthalmol Vis Sci 2015, 56: 8373–8381.

    Article  CAS  PubMed  Google Scholar 

  116. Steinbusch HWM. Distribution of serotonin-immunoreactivity in the central nervous system of the rat—Cell bodies and terminals. Neuroscience 1981, 6: 557–618.

    Article  CAS  PubMed  Google Scholar 

  117. Vertes RP. A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 1991, 313: 643–668.

    Article  CAS  PubMed  Google Scholar 

  118. Morin LP, Meyer-Bernstein EL. The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 1999, 91: 81–105.

    Article  CAS  PubMed  Google Scholar 

  119. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 1998, 82: 443–468.

    Article  CAS  PubMed  Google Scholar 

  120. Van der Heijden KB, Smits MG, Van Someren EJ, Ridderinkhof KR, Gunning WB. Effect of melatonin on sleep, behavior, and cognition in ADHD and chronic sleep-onset insomnia. J Am Acad Child Adolesc Psychiatry 2007, 46: 233–241.

    Article  PubMed  Google Scholar 

  121. Tseng PT, Chen YW, Tu KY, Chung W, Wang HY, Wu CK, et al. Light therapy in the treatment of patients with bipolar depression: A meta-analytic study. Eur Neuropsychopharmacol 2016, 26: 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  122. Willis GL, Turner EJ. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int 2007, 24: 521–537.

    Article  PubMed  Google Scholar 

  123. Forbes D, Culum I, Lischka AR, Morgan DG, Peacock S, Forbes J, et al. Light therapy for managing cognitive, sleep, functional, behavioural, or psychiatric disturbances in dementia. Cochrane Database Syst Rev 2009: CD003946.

  124. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 2016, 540: 230–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Artigas F. Serotonin receptors involved in antidepressant effects. Pharmacol Ther 2013, 137: 119–131.

    Article  CAS  PubMed  Google Scholar 

  126. Cajochen C. Alerting effects of light. Sleep Med Rev 2007, 11: 453–464.

    Article  PubMed  Google Scholar 

  127. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005, 8: 1263–1268.

    Article  CAS  PubMed  Google Scholar 

  128. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007, 446: 633–639.

    Article  CAS  PubMed  Google Scholar 

  129. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc Natl Acad Sci U S A 2005, 102: 17816–17821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Masseck OA, Spoida K, Dalkara D, Maejima T, Rubelowski JM, Wallhorn L, et al. Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron 2014, 81: 1263–1273.

    Article  CAS  PubMed  Google Scholar 

  131. Spoida K, Masseck OA, Deneris ES, Herlitze S. Gq/5-HT2c receptor signals activate a local GABAergic inhibitory feedback circuit to modulate serotonergic firing and anxiety in mice. Proc Natl Acad Sci U S A 2014, 111: 6479–6484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Anderson JL, Glod CA, Dai J, Cao Y, Lockley SW. Lux vs. wavelength in light treatment of Seasonal Affective Disorder. Acta Psychiatr Scand 2009, 120: 203–212.

    Article  CAS  PubMed  Google Scholar 

  133. Strong RE, Marchant BK, Reimherr FW, Williams E, Soni P, Mestas R. Narrow-band blue-light treatment of seasonal affective disorder in adults and the influence of additional nonseasonal symptoms. Depress Anxiety 2009, 26: 273–278.

    Article  PubMed  Google Scholar 

  134. Desan PH, Weinstein AJ, Michalak EE, Tam EM, Meesters Y, Ruiter MJ, et al. A controlled trial of the Litebook light-emitting diode (LED) light therapy device for treatment of Seasonal Affective Disorder (SAD). BMC Psychiatry 2007, 7: 38.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review was supported by grants from the Commission on Innovation and Technology in Shenzhen Municipality of China (JCYJ20150630114942262), the Postdoctoral Science Foundation of China (2015M582440), International Postdoctoral Exchange Fellowship Program 2016 by the Office of China Postdoctoral Council (20160021), and the National Key R&D Program of China (2017YFC1310503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotao Li or Xiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, X. The Antidepressant Effect of Light Therapy from Retinal Projections. Neurosci. Bull. 34, 359–368 (2018). https://doi.org/10.1007/s12264-018-0210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0210-1

Keywords

Navigation