Skip to main content

Advertisement

Log in

Attenuation of β-Amyloid Toxicity In Vitro and In Vivo by Accelerated Aggregation

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Accumulation and aggregation of β-amyloid (Aβ) peptides result in neuronal death, leading to cognitive dysfunction in Alzheimer’s disease. The self-assembled Aβ molecules form various intermediate aggregates including oligomers that are more toxic to neurons than the mature aggregates, including fibrils. Thus, one strategy to alleviate Aβ toxicity is to facilitate the conversion of Aβ intermediates to larger aggregates such as fibrils. In this study, we designed a peptide named A3 that significantly enhanced the formation of amorphous aggregates of Aβ by accelerating the aggregation kinetics. Thioflavin T fluorescence experiments revealed an accelerated aggregation of Aβ monomers, accompanying reduced Aβ cytotoxicity. Transgenic Caenorhabditis elegans over-expressing amyloid precursor protein exhibited paralysis due to the accumulation of Aβ oligomers, and this phenotype was attenuated by feeding the animals with A3 peptide. These findings suggest that the Aβ aggregation-promotion effect can potentially be useful for developing strategies to reduce Aβ toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Selkoe, Dennis J. Physiological production of the β-amyloid protein and the mechanism of Alzheimer’s disease. Trends Neurosci 1993, 16: 403–409.

    Article  CAS  PubMed  Google Scholar 

  2. Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. J Neurosci 1993, 13: 1676–1687.

    CAS  PubMed  Google Scholar 

  3. Selkoe DJ. Alzheimer’s disease–genotypes, phenotype, and treatments. Science 1997, 275: 322–330.

    Article  Google Scholar 

  4. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002, 297: 353–356.

    Article  CAS  PubMed  Google Scholar 

  5. Drouet B, Pinçon-Raymond M, Chambaz J, Pillot T. Molecular basis of Alzheimer’s disease. Cell Mol Life Sci 2000, 57: 705–715.

    Article  CAS  PubMed  Google Scholar 

  6. Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003, 26: 267–298.

    Article  CAS  PubMed  Google Scholar 

  7. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 2007, 8: 101–112.

    Article  CAS  PubMed  Google Scholar 

  8. Morgado I, Fändrich M. Assembly of Alzheimer’s Aβ peptide into nanostructured amyloid fibrils. Curr Opin Colloid Interface Sci 2011, 16: 508–514.

    Article  CAS  Google Scholar 

  9. Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Klein W L, et al. Diffusible, nonfibrillar ligands derived from A1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 1998, 95: 6448–6453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pallitto MM, Ghanta J, Heinzelman P, Kiessling LL, Murphy RM. Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry 1999, 38: 3570–3578.

    Article  CAS  PubMed  Google Scholar 

  11. Ward RV, Jennings KH, Jepras R, Neville W, Owen DE, Howlett DR, et al. Fractionation and characterization of oligomeric, protofibrillar and fibrillar forms of beta-amyloid peptide. Biochem J 2000, 348: 137–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirkitadze MD, Bitan G, Teplow DB. Paradigm shifts in Alzheimer’s disease and other neurodegenerative disorders: The emerging role of oligomeric assemblies. J Neurosci Res 2002, 69: 567–577.

    Article  CAS  PubMed  Google Scholar 

  13. Lu B, Nagappan G, Guan X, Wren P. BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 2013, 14: 401–416.

    Article  CAS  PubMed  Google Scholar 

  14. Klajnert B, Wasiak T, Ionov M, Fernandez-Villamarin M, Sousa-Herves A, Correa J, et al. Dendrimers reduce toxicity of Aβ 1-28 peptide during aggregation and accelerate fibril formation. Nanomedicine 2012, 8:1372.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu LJ, Song Y, Cheng PN, Jeffrey SM. Molecular design for dual modulation effect of amyloid protein aggregation. J Am Chem Soc 2015, 137: 8062–8068.

    Article  CAS  PubMed  Google Scholar 

  16. Fändrich M, Fletcher MA, Dobson CM. Amyloid fibrils from muscle myoglobin. Nature 2001, 410: 165–166.

    Article  PubMed  Google Scholar 

  17. Kowalewski T, Holtzman DM. In situ atomic force microscopy study of Alzheimer’s β-amyloid peptide on different substrates: New insights into mechanism of β-sheet formation. Proc Natl Acad Sci U S A 1999, 96: 3688–3693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mao X, Wang Y, Liu L, Niu L, Yang YL, Wang W. Molecular-level evidence of the surface-induced transformation of peptide structures revealed by scanning tunneling microscopy. Langmuir 2009, 25: 8849–8853.

    Article  CAS  PubMed  Google Scholar 

  19. Lorenzo A, Yankner BA. β-amyloid neurotoxicity requires fibril formation and is inhibited by Congo Red. Proc Natl Acad Sci U S A 1995, 91: 12243–12247.

    Article  Google Scholar 

  20. Woods LA, Platt GW, Hellewell AL, Hewitt EW, Homans SW, Ashcroft AE, et al. Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Nat Chem Biol 2011, 7: 730–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Geng J, Li M, Ren JS, Wang EB, Qu XG. Polyoxometalates as inhibitors of the aggregation of amyloid β peptides associated with Alzheimer’s disease. Angew Chem Int Ed Engl 2011, 50: 4184–4188.

    Article  CAS  PubMed  Google Scholar 

  22. Alavez S, Vantipalli MC, Zucker DJS, Klang IM, Lithgow GJ. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 2011, 472: 226–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fändrich M. Oligomeric intermediates in amyloid formation: Structure determination and mechanisms of toxicity. J Mol Biol 2012, 421: 427–440.

    Article  PubMed  Google Scholar 

  24. Morgado I, Fändrich M. Assembly of Alzheimer’s Aβ peptide into nanostructured amyloid fibrils. Curr Opin Colloid Interface Sci 2011, 16: 508–514.

    Article  CAS  Google Scholar 

  25. Choi JS, Braymer JJ, Nanga RPR, Ramamoorthy A, Lim MH. Design of small molecules that target metal-A species and regulate metal-induced A aggregation and neurotoxicity. Proc Natl Acad Sci U S A 2010, 107: 21990–21995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoo SI, Yang M, Brender JR, Subramanian V, Sun K, Joo NE. Innentitelbild: inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins (Angew. Chem. 22/2011). Angew Chem, 2011, 123: 5096. doi:10.1002/ange.201102689.

    Article  Google Scholar 

  27. Klajnert B, Wasiak T, Ionov M, Fernandez-Villamarin M, Sousa-Herves A, Correa J, et al. Dendrimers reduce toxicity of Aβ 1-28 peptide during aggregation and accelerate fibril formation. Nanomedicine 2012, 8: 1372–1378.

    Article  CAS  PubMed  Google Scholar 

  28. Moran PM, Higgins LS, Cordell B. Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein. Proc Natl Acad Sci U S A 1995, 92: 5341–5345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohno M, Chang L, Tseng W. Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci, 2006, 23: 251–260.

    Article  PubMed  Google Scholar 

  30. Link CD. Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 1995, 92: 9368–9372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Link CD, Taft A, Kapulkin V, Duke K, Kim S, Fei Q, et al. Gene expression analysis in a transgenic Caenorhabditis elegans, Alzheimer’s disease model. Neurobiol Aging, 2003, 24: 397–413.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng B, Gong H, Xiao H, Petersen RB, Zheng L, Huang K. Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta 2013, 1830: 4860–4871.

    Article  CAS  PubMed  Google Scholar 

  33. Pike CJ, Walencewiczwasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW, et al. Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25-35 region to aggregation and neurotoxicity. J Neurochem 1995, 64: 253–265.

    Article  CAS  PubMed  Google Scholar 

  34. Scrocchi LA, Ha K, Chen Y, Wu L, Wang F, Fraser PE. Identification of minimal peptide sequences in the (8-20) domain of human islet amyloid polypeptide involved in fibrillogenesis. J Struct Biol 2003, 141: 218–227.

    Article  CAS  PubMed  Google Scholar 

  35. Du HN, Li HT, Zhang F, Lin XJ, Shi JH, Shi YH, et al. Acceleration of alpha-synuclein aggregation by homologous peptides. FEBS Lett 2006, 580: 3657–3664.

    Article  CAS  PubMed  Google Scholar 

  36. Kim JR, Murphy RM. Mechanism of accelerated assembly of beta-amyloid filaments into fibrils by KLVFFK(6). Biophys J 2004, 86: 3194–3203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Re F, Airoldi C, Zona C, Masserini M, La FB, Quattrocchi N, et al. Beta amyloid aggregation inhibitors: small molecules as candidate drugs for therapy of Alzheimer’s disease. Curr Med Chem 2010, 17: 2990–3006.

    Article  CAS  PubMed  Google Scholar 

  38. Matthew B, Shohei K. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010, 1804: 1405–1412.

    Article  Google Scholar 

  39. Krebs MR, Bromley EH, Donald AM. The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol 2005, 149: 30–37.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Wu Z, Butko P, Christen Y, Lambert MP, Klein WL, et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 2006, 26: 13102–13113.

    Article  CAS  PubMed  Google Scholar 

  41. Bharadwaj PR, Dubey AK, Masters CL, Martins RN, Macreadie IG. Aβ aggregation and possible implications in Alzheimer’s disease pathogenesis. J Cell Mol Med 2009, 13: 412–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bieschke J, Lindquist S. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 2010, 107: 7710–7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Prof. Bai Lu of Tsinghua University for his help and thoughtful suggestions on the manuscript. This work was supported by the National Natural Science Foundation of China (91127043, 31600803, and 21273051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, A., Wang, C., Song, B. et al. Attenuation of β-Amyloid Toxicity In Vitro and In Vivo by Accelerated Aggregation. Neurosci. Bull. 33, 405–412 (2017). https://doi.org/10.1007/s12264-017-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-017-0144-z

Keywords

Navigation