Skip to main content

Advertisement

Log in

Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Painful peripheral neuropathy is a common complication of diabetes mellitus. The symptom of pain can become a major factor that decreases the quality of life of patients with diabetes, while effective treatment is lacking. In the present study, we aimed to investigate the changes of pain threshold in the early stage of diabetes in db/db mice, an animal model of type 2 diabetes mellitus, and the underlying molecular mechanisms. We found that (1) db/db mice (with a leptin receptor-null mutation and characterized by obesity and hyperglycemia) showed hypersensitivity to mechanical and thermal stimuli at the early stage of diabetes; (2) phosphorylated extracellular signalregulated kinase (pERK), but not total ERK in the spinal cord and dorsal root ganglia in db/db mice significantly increased compared with wild-type mice. The increased pERK immunoreactivity occurred in both NeuN-expressing neurons and GFAPexpressing astrocytes, but not in Iba-1-expressing microglia; (3) both single and consecutive (for 5 days) intrathecal injections of U0126 (2 nmol per day), a selective MEK (an ERK kinase) inhibitor beginning at 8 weeks of age, attenuated the bilateral mechanical allodynia in the von-Frey test and heat hyperalgesia in Hargreave’s test; and (4) db/db mice also displayed increased nocifensive behavior during the formalin test, and this was blocked by intrathecal injection of U0126. Also, the expression of pERK1 and pERK2 was upregulated following the formalin injection. Our results suggested that the activation of ERK in spinal neurons and astrocytes is correlated with pain hypersensitivity of the type 2 diabetes animal model. Inhibiting the ERK pathway may provide a new therapy for pain control in type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan Y, Ding X, Cheng Y, Fan D, Tan L, Wang Y, et al. ficacy of pregabalin for peripheral neuropathic pain: results of an 8-week, flexible-dose, double-blind, placebo-controlled study conducted in China. Clin Ther 2011, 33: 159–166.

    Article  CAS  PubMed  Google Scholar 

  2. Yao P, Meng LX, Ma JM, Ding YY, Wang ZB, Zhao GL, et al. Sustained-release oxycodone tablets for moderate to severe painful diabetic peripheral neuropathy: A multicenter, open-labeled, postmarketing clinical observation. Pain Med 2012, 13: 107–114.

    Article  PubMed  Google Scholar 

  3. McGreevy K, Williams KA. Contemporary insights into painful diabetic neuropathy and treatment with spinal cord stimulation. Curr Pain Headache Rep 2012, 16: 43–49.

    Article  PubMed  Google Scholar 

  4. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 2008, 70: 1630–1635.

    Article  CAS  PubMed  Google Scholar 

  5. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 2010, 33: 2285–2293.

    Article  PubMed  Google Scholar 

  6. Jensen MP, Dworkin RH, Gammaitoni AR, Olaleye DO, Oleka N, Galer BS. Do pain qualities and spatial characteristics make independent contributions to interference with physical and emotional functioning? J Pain 2006, 7: 644–653.

    Article  PubMed  Google Scholar 

  7. Dworkin RH, Jensen MP, Gammaitoni AR, Olaleye DO, Galer BS. Symptom profiles differ in patients with neuropathic versus non-neuropathic pain. J Pain 2007, 8: 118–126.

    Article  PubMed  Google Scholar 

  8. Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: An evidence based proposal. Pain 2005, 118: 289–305.

    Article  CAS  PubMed  Google Scholar 

  9. O’Connor AB, Dworkin RH. Treatment of neuropathic pain: an overview of recent guidelines. Am J Med 2009, 122(Suppl 10): S22–S32.

    Article  PubMed  Google Scholar 

  10. Daulhac L, Mallet C, Courteix C, Etienne M, Duroux E, Privat AM, et al. Diabetes-induced mechanical hyperalgesia involves spinal mitogen-activated protein kinase activation in neurons and microglia via N-methyl-D-aspartate-dependent mechanisms. Mol Pharmacol 2006, 70: 1246–1254.

    Article  CAS  PubMed  Google Scholar 

  11. Tsuda M, Ueno H, Kataoka A, Tozaki-Saitoh H, Inoue K. Activation of dorsal horn microglia contributes to diabetesinduced tactile allodynia via extracellular signal-regulated protein kinase signaling. Glia 2008, 56: 378–386.

    Article  PubMed  Google Scholar 

  12. Comelli F, Bettoni I, Colombo A, Fumagalli P, Giagnoni G, Costa B. Rimonabant, a cannabinoid CB1 receptor antagonist, attenuates mechanical allodynia and counteracts oxidative stress and nerve growth factor deficit in diabetic mice. Eur J Pharmacol 2010, 637: 62–69.

    Article  CAS  PubMed  Google Scholar 

  13. Narayan KM, Gregg EW, Fagot-Campagna A, Engelgau MM, Vinicor F. Diabetes—a common, growing, serious, costly, and potentially preventable public health problem. Diabetes Res Clin Pract 2000, 50(Suppl 2): S77–84.

    Article  PubMed  Google Scholar 

  14. Barrett AM, Lucero MA, Le T, Robinson RL, Dworkin RH, Chappell AS. Epidemiology, public health burden, and treatment of diabetic peripheral neuropathic pain: a review. Pain Med 2007, 8(Suppl 2): S50–62.

    Article  PubMed  Google Scholar 

  15. Currie CJ, Poole CD, Woehl A, Morgan CL, Cawley S, Rousculp MD, et al. The financial costs of healthcare treatment for people with Type 1 or Type 2 diabetes in the UK with particular reference to differing severity of peripheral neuropathy. Diabet Med 2007, 24: 187–194.

    Article  CAS  PubMed  Google Scholar 

  16. Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndrome in mice. Diabetologia 1978, 14: 141–148.

    Article  CAS  PubMed  Google Scholar 

  17. Ji RR, Baba H, Brenner GJ, Woolf CJ. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci 1999, 2: 1114–1119.

    Article  CAS  PubMed  Google Scholar 

  18. Karim F, Wang CC, Gereau RW 4th. Metabotropic glutamate receptor subtypes 1 and 5 are activators of extracellular signal-regulated kinase signaling required for inflammatory pain in mice. J Neurosci 2001, 21: 3771–3779.

    CAS  PubMed  Google Scholar 

  19. Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, et al. The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 2003, 40: 775–784.

    Article  CAS  PubMed  Google Scholar 

  20. Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J Neurosci 2004, 24: 8310–8321.

    Article  CAS  PubMed  Google Scholar 

  21. Wei F, Vadakkan KI, Toyoda H, Wu LJ, Zhao MG, Xu H, et al. Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J Neurosci 2006, 26: 851–861.

    Article  CAS  PubMed  Google Scholar 

  22. Cao H, Cui YH, Zhao ZQ, Cao XH, Zhang YQ. Activation of extracellular signal-regulated kinase in the anterior cingulate cortex contributes to the induction of long-term potentiation in rats. Neurosci Bull 2009, 25(5): 301–308.

    Article  CAS  PubMed  Google Scholar 

  23. Cao H, Ren WH, Zhu MY, Zhao ZQ, Zhang YQ. Activation of glycine site and GluN2B subunit of NMDA receptors is necessary for ERK/CREB signaling cascade in rostral anterior cingulate cortex in rats: implications for affective pain. Neurosci Bull 2012, 28(1): 77–87.

    Article  CAS  PubMed  Google Scholar 

  24. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983, 16: 109–110.

    Article  CAS  PubMed  Google Scholar 

  25. Bao F, Chen ML, Zhang YQ, Zhao ZQ. Hypoalgesia in mice lacking aquaporin-4 water channels. Brain Res Bull 2010, 83: 298–303.

    Article  CAS  PubMed  Google Scholar 

  26. Donahue RR, LaGraize SC, Fuchs PN. Electrolytic lesion of the anterior cingulate cortex decreases inflammatory, but not neuropathic nociceptive behavior in rats. Brain Res 2001, 897: 131–138.

    Article  CAS  PubMed  Google Scholar 

  27. Gao YJ, Ji RR. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touchevoked central sensitization and mechanical allodynia. J Neurochem 2010, 115: 505–514.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hu HJ, Carrasquillo Y, Karim F, Jung WE, Nerbonne JM, Schwarz TL, et al. The kv4.2 potassium channel subunit is required for pain plasticity. Neuron 2006, 50: 89–100.

    Article  CAS  PubMed  Google Scholar 

  29. English JD, Sweatt JD. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J Biol Chem 1996, 271: 24329–24332.

    Article  CAS  PubMed  Google Scholar 

  30. Tjolsen A, Berge OG, Hunskaar S, Rosland JH, Hole K. The formalin test: an evaluation of the method. Pain 1992, 51: 5–17.

    Article  CAS  PubMed  Google Scholar 

  31. Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalininduced tissue injury. J Neurosci 1992, 12: 3665–3670.

    CAS  PubMed  Google Scholar 

  32. Murray CW, Porreca F, Cowan A. Methodological refinements to the mouse paw formalin test. An animal model of tonic pain. J Pharmacol Methods 1988, 20: 175–186.

    Article  CAS  PubMed  Google Scholar 

  33. Huang ZY, Xu H, Clapham DE, Ji RR. Phosphatidylinositol 3-kinase activates ERK in primary sensory neurons and mediates inflammatory heat hyperalgesia through TRPV1 sensitization. J Neurosci 2004, 24: 8300–8309.

    Article  Google Scholar 

  34. Zhuang ZY, Gerner P, Woolf CJ, Ji RR. ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain 2005, 114: 149–159.

    Article  PubMed  Google Scholar 

  35. Guo SW, Liu MG, Long YL, Lu ZM, Yu HY, Hou JF, et al. Region-or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs) in naive and pain-experiencing rats. BMC Neurosci 2007, 8: 53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhang Y, Cai G, Ni X, Sun J. The role of ERK activation in the neuronal excitability in the chronically compressed dorsal root ganglia. Neurosci Lett 2007, 419: 153–157.

    Article  CAS  PubMed  Google Scholar 

  37. Cheng HT, Dauch JR, Hayes JM, Hong Y, Feldman EL. Nerve growth factor mediates mechanical allodynia in a mouse model of type 2 diabetes. J Neuropathol Exp Neurol 2009, 68: 1229–1243.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Cheng HT, Dauch JR, Oh SS, Hayes JM, Hong Y, Feldman EL. p38 mediates mechanical allodynia in a mouse model of type 2 diabetes. Mol Pain 2010, 6: 28.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wright DE, Johnson MS, Arnett MG, Smittkamp SE, Ryals JM. Elective changes in nocifensive behavior despite normal cutaneous axon innervation in leptin receptor-null mutant (db/ db) mice. J Peripher Nerv Syst 2007, 12: 250–261.

    Article  PubMed  Google Scholar 

  40. Dai Y, Iwata K, Fukuoka T, Kondo E, Tokunaga A, Yamanaka H, et al. Phosphorylation of extracellular signal-regulated kinase in primary afferent neurons by noxious stimuli and its involvement in peripheral sensitization. J Neurosci 2002, 22: 7737–7745.

    CAS  PubMed  Google Scholar 

  41. Lewin GR, Rueff A, Mendell LM. Peripheral and central mechanisms of NGF-induced hyperalgesia. Eur J Neurosci 1994, 6: 1903–1912.

    Article  CAS  PubMed  Google Scholar 

  42. Chaban V. Estrogen and visceral nociception at the level of primary sensory neurons. Pain Res Treat 2012, (2012). pii:960780.

    Google Scholar 

  43. Hu F, Wang Q, Wang P, Wang W, Qian W, Xiao H, et al. 17β-Estradiol regulates the gene expression of voltage-gated sodium channels: role of estrogen receptor α and estrogen receptor β. Endocrine 2012, i41: 274–280.

    Article  Google Scholar 

  44. Roane DS, Porter JR. Nociception and opioid-induced analgesia in lean (Fa/-) and obese (fa/fa) Zucker rats. Physiol Behav 1986, 382: 215–218.

    Article  Google Scholar 

  45. Kamiya H, Murakawa Y, Zhang W, Sima AA. Unmyelinated fiber sensory neuropathy differs in type 1 and type 2 diabetes. Diabetes Metab Res Rev 2005, 21: 448–458.

    Article  CAS  PubMed  Google Scholar 

  46. Drel VR, Mashtalir N, Ilnytska O, Shin J, Li F, Lyzogubov VV, et al. The leptin-deficient (ob/ob) mouse: A new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 2006, 55: 3335–3343.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang JL, Yang JP, Zhang JR, Li RQ, Wang J, Jan JJ, et al. Gabapentin reduces allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing expression level of Nav1.7 and p-ERK1/2 in DRG neurons. Brain Res 2013, 1493: 13–18.

    Article  CAS  PubMed  Google Scholar 

  48. Wang H, Dai Y, Fukuoka T, Yamanaka H, Obata K, Tokunaga A, et al. Enhancement of stimulation-induced ERK activation in the spinal dorsal horn and gracile nucleus neurons in rats with peripheral nerve injury. Eur J Neurosci 2004, 19: 884–890.

    Article  PubMed  Google Scholar 

  49. Hao S, Mata M, Wolfe D, Huang S, Glorioso JC, Fink DJ. Gene transfer of glutamic acid decarboxylase reduces neuropathic pain. Ann Neurol 2005, 57: 914–918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hao J, Liu MG, Yu YQ, Cao FL, Li Z, Lu ZM, et al. Roles of peripheral mitogen-activated protein kinases in melittininduced nociception and hyperalgesia. Neuroscience 2008, 152: 1067–1075.

    Article  CAS  PubMed  Google Scholar 

  51. Gao YJ, Ji RR. Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touchevoked central sensitization and mechanical allodynia. J Neurochem 2010, 115: 505–514.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Courteix C, Eschalier A, Lavarenne J. Streptozocininduced diabetic rats: behavioural evidence for a model of chronic pain. Pain 1993, 53: 81–88.

    Article  CAS  PubMed  Google Scholar 

  53. Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: effects of insulin, aldose reductase inhibition and lidocaine. Pain 1996, 68: 293–299.

    Article  CAS  PubMed  Google Scholar 

  54. Kamei J, Zushida K, Morita K, Sasaki M, Tanaka S. Role of vanilloid VR1 receptor in thermal allodynia and hyperalgesia in diabetic mice. Eur J Pharmacol 2001, 422: 83–86.

    Article  CAS  PubMed  Google Scholar 

  55. Christianson JA, Ryals JM, McCarson KE, Wright DE. Beneficial actions of neurotrophin treatment on diabetesinduced hypoalgesia in mice. J Pain 2003, 4: 493–504.

    Article  CAS  PubMed  Google Scholar 

  56. Calcutt NA. Experimental models of painful diabetic neuropathy. J Neurol Sci 2004, 22: 137–139.

    Article  Google Scholar 

  57. Liao YH, Zhang GH, Jia D, Wang P, Qian NS, He F, et al. Spinal astrocytic activation contributes to mechanical allodynia in a mouse model of type 2 diabetes. Brain Res 2011, 1368: 324–335.

    Article  CAS  PubMed  Google Scholar 

  58. Obata K, Yamanaka H, Dai Y, Tachibana T, Fukuoka T, Tokunaga A, et al. Differential activation of extracellular signal-regulated protein kinase in primary afferent neurons regulates brain-derived neurotrophic factor expression after peripheral inflammation and nerve injury. J Neurosci 2003, 23: 4117–4126.

    CAS  PubMed  Google Scholar 

  59. Daulhac L, Maffre V, Mallet C, Etienne M, Privat AM, Kowalski-Chauvel A, et al. Phosphorylation of spinal N-methyl-d-aspartate receptor NR1 subunits by extracellular signal-regulated kinase in dorsal horn neurons and microglia contributes to diabetes-induced painful neuropathy. Eur J Pain 2011,15: 169.e1–169.e12.

    Google Scholar 

  60. Ji RR, Befort K, Brenner GJ, Woolf CJ. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J Neurosci 2002, 22: 478–485.

    CAS  PubMed  Google Scholar 

  61. Hirosumi1 J, Tuncman G, Chang L, Görgün1 CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature 2002, 420: 333–336.

    Article  CAS  PubMed  Google Scholar 

  62. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, Karin M, et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001, 293: 1673–1677.

    Article  CAS  PubMed  Google Scholar 

  63. Calcutt NA, Jorge MC, Yaksh TL, Chaplan SR. Tactile allodynia and formalin hyperalgesia in streptozotocin-diabetic rats: Effects of insulin, aldose reductase inhibition and lidocaine. Pain 1996, 68: 293–299.

    Article  CAS  PubMed  Google Scholar 

  64. Calcutt NA, Stiller C, Gustafsson H, Malmberg AB. Elevated substance-P-like immunoreactivity levels in spinal dialysates during the formalin test in normal and diabetic rats. Brain Res 2000, 856: 20–27.

    Article  CAS  PubMed  Google Scholar 

  65. Coderre TJ, Melzack R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalininduced tissue injury. J Neurosci 1992, 12: 3665–3670.

    CAS  PubMed  Google Scholar 

  66. Karim F, Hu HJ, Adwanikar H, Kaplan DR, Gereau RW. Impaired inflammatory pain and thermal hyperalgesia in mice expressing neuron-specific dominant negative mitogen activated protein kinase kinase (MEK). Mol Pain 2006, 2: 2.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Xu or Hong Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Chen, H., Ling, BY. et al. Extracellular signal-regulated protein kinase activation in spinal cord contributes to pain hypersensitivity in a mouse model of type 2 diabetes. Neurosci. Bull. 30, 53–66 (2014). https://doi.org/10.1007/s12264-013-1387-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1387-y

Keywords

Navigation