Skip to main content
Log in

Reactive extraction for the separation of glyceric acid from aqueous solutions with 2-naphthaleneboronic acid and tri-octyl methyl ammonium chloride

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Glyceric acid (GA), a carboxylic group-containing diol, is obtained from bioresources via microbial processes. In this study, we aimed to develop a reactive extraction method to separate GA from aqueous solutions using 2-naphthaleneboronic acid (2NB) and tri-octyl methyl ammonium chloride (TOMAC). Different feed molar amounts of 2NB (0–25 µmol), TOMAC (0–500 µmol), and NaOH (0–250 µmol) were used for GA (2.5 µmol) separation. A combination of 25 µmol 2NB, 100 µmol TOMAC, and 25 µmol NaOH was determined to be optimal for GA separation, providing 66.8 ± 3.2% GA yield at pH 11. GA was extracted by 2NB and TOMAC in a coordinated manner. Moreover, effects of various carboxylic acids (acetic, lactic, succinic, malic, tartaric, and citric acids) on GA separation from aqueous solutions were investigated. Interestingly, no significant effect on GA yeild (60.3 ± 1.2–65.2 ± 2.5%) was observed regardless of the type of carboxylic acid. The optimized protocol was subsequently applied to separate GA from crude GA solution prepared by incubating glycerol with the cells of the acetic acid bacterium, Acetobacter tropicalis NBRC 16470. GA separation was achieved at a comparable level (yield: 70.6 ± 4.6% and purity: 76.1 ± 4.1%) as that achieved using a GA reagent. This study demonstrated the efficiency of the repeated use of the organic phase for GA separation, with no significant changes in GA yield. Query ID="Q1" Text="Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [specify authors given name] Last name [specify authors last name]. Also, kindly confirm the details in the metadata are correct."

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ling H, Teo W, Chen B et al (2014) Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol 29:99–106. https://doi.org/10.1016/j.copbio.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  2. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38:873–890. https://doi.org/10.1007/s10295-011-0970-3

    Article  CAS  PubMed  Google Scholar 

  3. Cho JS, Kim GB, Eun H et al (2022) Designing microbial cell factories for the production of chemicals. JACS Au 2:1781–1799. https://doi.org/10.1021/jacsau.2c00344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahn JH, Jung KH, Lim ES et al (2023) Recent advances in microbial production of medium chain fatty acid from renewable carbon resources: a comprehensive review. Bioresour Technol 381:129147. https://doi.org/10.1016/j.biortech.2023.129147

    Article  CAS  Google Scholar 

  5. Flores Bueso Y, Tangney M (2017) Synthetic biology in the driving seat of the bioeconomy. Trends Biotechnol 35:373–378. https://doi.org/10.1016/j.tibtech.2017.02.002

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet M, Lagier JC, Raoult D et al (2019) Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect 34:100622. https://doi.org/10.1016/j.nmni.2019.100622

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schafhauser T, Kulik A (2023) Isolation and purification of natural products from microbial cultures. In: Sass P (ed) Antibiotics. Methods in molecular biology, vol 2601. Humana, New York, pp 75–96

    Google Scholar 

  8. Grote F, Ditz R, Strube J (2012) Downstream of downstream processing: development of recycling strategies for biopharmaceutical processes. J Chem Technol Biotechnol 87:481–497. https://doi.org/10.1002/jctb.2727

    Article  CAS  Google Scholar 

  9. Wang Q, Chen GQ, Lin L et al (2021) Purification of organic acids using electrodialysis with bipolar membranes (EDBM) combined with monovalent anion selective membranes. Sep Purif Technol 279:119739. https://doi.org/10.1016/j.seppur.2021.119739

    Article  CAS  Google Scholar 

  10. Wasewar KL, Heesink ABM, Versteeg GF et al (2002) Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics. J Biotechnol 97:59–68. https://doi.org/10.1016/S0168-1656(02)00057-3

    Article  CAS  PubMed  Google Scholar 

  11. Bookser BC, Zhu S (2001) Solid phase extraction purification of carboxylic acid products from 96-well format solution phase synthesis with DOWEX 1×8-400 formate anion exchange resin. J Comb Chem 3:205–215. https://doi.org/10.1021/cc000086s

    Article  CAS  PubMed  Google Scholar 

  12. Chiellini E, Faggioni S, Solaro R (1990) Polyesters based on glyceric acid derivatives as potential biodegradable materials. J Bioact Compat Polym 5:16–30. https://doi.org/10.1177/088391159000500103

    Article  CAS  Google Scholar 

  13. Fukuoka T, Habe H, Kitamoto D et al (2011) Bioprocessing of glycerol into glyceric acid for use in bioplastic monomer. J Oleo Sci 60:369–373. https://doi.org/10.5650/jos.60.369

    Article  CAS  PubMed  Google Scholar 

  14. Eriksson CJ, Saarenmaa TP, Bykov IL et al (2007) Acceleration of ethanol and acetaldehyde oxidation by D-glycerate in rats. Metabolism 56:895–898. https://doi.org/10.1016/j.metabol.2007.01.019

    Article  CAS  PubMed  Google Scholar 

  15. Habe H, Fukuoka T, Kitamoto D et al (2009) Biotransformation of glycerol to D-glyceric acid by Acetobacter tropicalis. Appl Microbiol Biotechnol 81:1033–1039. https://doi.org/10.1007/s00253-008-1737-2

    Article  CAS  PubMed  Google Scholar 

  16. Habe H, Sato S, Fukuoka T et al (2011) Membrane-bound alcohol dehydrogenase is essential for glyceric acid production in Acetobacter tropicalis. J Oleo Sci 60:489–494. https://doi.org/10.5650/jos.60.489

    Article  CAS  PubMed  Google Scholar 

  17. Long BHD, Matsubara K, Tanaka T et al (2023) Production of glycerate from glucose using engineered Escherichia coli. J Biosci Bioeng 135:375–381. https://doi.org/10.1016/j.jbiosc.2023.02.002

    Article  CAS  PubMed  Google Scholar 

  18. Habe H, Fukuoka T, Kitamoto D et al (2009) Application of electrodialysis to glycerate recovery from a glycerol containing model solution and culture broth. J Biosci Bioeng 107:425–428. https://doi.org/10.1016/j.jbiosc.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  19. Choudhury B, Swaminathan T (1998) Lactic acid extraction with trioctyl amine. Bioprocess Eng 19:317–320. https://doi.org/10.1007/s004490050526

    Article  CAS  Google Scholar 

  20. Zurob E, Rivas D, Olea F et al (2022) Succinic acid recovery from a glycerol-based solution using phosphonium ionic liquids supported by COSMO-RS. Fluid Ph Equilibria 559:113471. https://doi.org/10.1016/j.fluid.2022.113471

    Article  CAS  Google Scholar 

  21. Araújo EMR, Coelho FEB, Balarini JC et al (2017) Solvent extraction of citric acid with different organic phases. Adv Chem Eng Sci 7:304–324. https://doi.org/10.4236/aces.2017.73023

    Article  CAS  Google Scholar 

  22. James OO, Sauter W, Schröder U (2018) Towards selective electrochemical conversion of glycerol to 1,3-propanediol. RSC Adv 8:10818–10827. https://doi.org/10.1039/c8ra00711j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar S, Pandey S, Wasewar KL et al (2021) Reactive extraction as an intensifying approach for the recovery of organic acids from aqueous solution: a comprehensive review on experimental and theoretical studies. J Chem Eng Data 66:1557–1573. https://doi.org/10.1021/acs.jced.0c00405

    Article  CAS  Google Scholar 

  24. Matsumoto M, Kado A, Shiraki T et al (2009) Reactive extraction of diols with phenyl boronic acid and trioctylmethylammonium chloride as coextractants and quantitative structure–property relationship of their extraction behaviors. J Chem Technol Biotechnol 84:1712–1716. https://doi.org/10.1002/jctb.2236

    Article  CAS  Google Scholar 

  25. Williams GT, Kedge JL, Fossey JS (2021) Molecular boronic acid-based saccharide sensors. ACS Sens 6:1508–1528. https://doi.org/10.1021/acssensors.1c00462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Griffin GJ, Shu L (2004) Solvent extraction and purification of sugars from hemicellulose hydrolysates using boronic acid carriers. J Chem Technol Biotechnol 79:505–511. https://doi.org/10.1002/jctb.1013

    Article  CAS  Google Scholar 

  27. van der Wal PJ, Kersten SRA, Lange JP et al (2023) Process development on the high-yielding reactive extraction of xylose with boronic acids. Ind Eng Chem Res 62:8002–8009. https://doi.org/10.1021/acs.iecr.3c00364

    Article  CAS  Google Scholar 

  28. Meng Q, Yu J, Yang L et al (2021) Efficient recovery of bio-based 1,2,4-butanetriol by using boronic acid anionic reactive extraction. Sep Purif Technol 255:117728. https://doi.org/10.1016/j.seppur.2020.117728

    Article  CAS  Google Scholar 

  29. Brooks WLA, Deng CC, Sumerlin BS (2018) Structure-reactivity relationships in boronic acid-diol complexation. ACS Omega 3:17863–17870. https://doi.org/10.1021/acsomega.8b02999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tong Y, Hirata M, Takanashi H et al (1998) Solvent screening for production of lactic acid by extractive fermentation. Sep Sci Technol 33:1439–1453. https://doi.org/10.1080/01496399808545059

    Article  CAS  Google Scholar 

  31. Cheryan M, Parekh SR (1995) Separation of glycerol and organic acids in model ethanol stillage by electrodialysis and precipitation. Process Biochem 30:17–23. https://doi.org/10.1016/0032-9592(95)87003-2

    Article  CAS  Google Scholar 

  32. Kersters K, Lisdiyanti P, Komagata K et al (2006) The family Acetobacteraceae: the Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, New York

    Google Scholar 

Download references

Acknowledgements

We thank the Biological Resource Center (NITE, Chiba, Japan) for providing A. tropicalis NBRC 16470 strain.

Author information

Authors and Affiliations

Authors

Contributions

LHDB, KA, and YA involved in conceptualization. KA and YA involved in methodology. KA involved in formal analysis. LHDB and KA involved in the investigation. LHDB, KA, TN, and YA involved in writing—review and editing. TN and YA involved in supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yuji Aso.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, L.H.D., Aoki, K., Tanaka, T. et al. Reactive extraction for the separation of glyceric acid from aqueous solutions with 2-naphthaleneboronic acid and tri-octyl methyl ammonium chloride. Biotechnol Bioproc E (2024). https://doi.org/10.1007/s12257-024-00110-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12257-024-00110-9

Keywords

Navigation