Skip to main content
Log in

Engineering potyvirus-like particles to display multiple copies of tuberculosis antigens

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Elicitation of antibody and cell-mediated immune responses are crucial for successful vaccine development against tuberculosis (TB). Mycobacterium tuberculosis (Mtb) antigens CFP10 and ESAT6, potent and proven vaccine candidates require appropriate adjuvants to trigger better immune response. Virus-like particles carrying repetitive copies of foreign antigens can induce both T and B cell-mediated immunity required for conferring protection against intracellular pathogens. In this study, we developed hybrid potyvirus-like particles (PVLPs) displaying mycobacterial antigens on their surface by translationally fusing the coat protein (CP) gene derived from Johnson grass mosaic virus with CFP 10 or/and ESAT 6 gene(s). The recombinant plasmids carrying fusion constructs were transformed into Escherichia coli, the fusion proteins, viz. ESAT6-CP, CP-CFP10 and ESAT6-CP-CFP10, were expressed and purified using Ni-NTA2+ affinity chromatography under denaturing conditions. The chimeric CP fusion proteins were self-assembled in vitro into PVLPs by the gradual removal of denaturing conditions. The purified hybrid PVLPs carrying Mtb antigens when injected into mice showed enhanced immunogenicity for both ESAT6 and CFP10 antigens compared to the same antigens immunized without any adjuvant. In vitro stimulation of splenocytes derived from mice immunized with chimeric PVLPs upregulates the expression of cytokines involved in TB immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw data for this manuscript is available upon reasonable request to the corresponding author.

References

  1. World Health Organization (2022) Global tuberculosis report 2022. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022. Accessed on 18th June 2023.

  2. P Andersen TM Doherty 2005 The success and failure of BCG—implications for a novel tuberculosis vaccine Nat Rev Microbiol 3 656 662 https://doi.org/10.1038/nrmicro1211

    Article  CAS  PubMed  Google Scholar 

  3. M Kourime ENK Akpalu H Ouair 2016 BCGitis/BCGosis in children: diagnosis, classification and exploration Arch Pediatr 23 754 759 https://doi.org/10.1016/j.arcped.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  4. J Grosset 2003 Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary Antimicrob Agents Chemother 47 833 836 https://doi.org/10.1128/AAC.47.3.833-836.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. WF Rijnink THM Ottenhoff SA Joosten 2021 B-cells and antibodies as contributors to effector immune responses in tuberculosis Front Immunol 12 640168 https://doi.org/10.3389/fimmu.2021.640168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. MA Behr MA Wilson WP Gill 1999 Comparative genomics of BCG vaccines by whole-genome DNA microarray Science 284 1520 1523 https://doi.org/10.1126/science.284.5419.1520

    Article  CAS  PubMed  ADS  Google Scholar 

  7. SM Arend P Haas de E Leyten 2005 ESAT-6 and CFP-10 in clinical versus environmental isolates of Mycobacterium kansasii J Infect Dis 191 1301 1310 https://doi.org/10.1086/428950

    Article  CAS  PubMed  Google Scholar 

  8. P Brodin I Rosenkrands P Andersen 2004 ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12 500 508 https://doi.org/10.1016/j.tim.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  9. FY Dai JF Wang XL Gong 2017 Immunogenicity and protective efficacy of recombinant Bacille Calmette-Guerin strains expressing mycobacterium antigens Ag85A, CFP10, ESAT-6, GM-CSF and IL-12p70 Hum Vaccin Immunother 13 1 8 https://doi.org/10.1080/21645515.2017.1279771

    Article  PubMed  Google Scholar 

  10. H Zhang P Peng S Miao 2010 Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti-mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice Scand J Immunol 72 349 357 https://doi.org/10.1111/j.1365-3083.2010.02448.x

    Article  CAS  PubMed  Google Scholar 

  11. AP Tkachuk EN Bykonia LI Popova 2020 Safety and immunogenicity of the GamTBvac, the recombinant subunit tuberculosis vaccine candidate: a phase II, multi-center, double-blind, randomized, placebo-controlled study Vaccines 8 652 https://doi.org/10.3390/vaccines8040652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. S Jenum K Tonby CS Rueegg 2021 A phase I/II randomized trial of H56:IC31 vaccination and adjunctive cyclooxygenase-2-inhibitor treatment in tuberculosis patients Nat Commun 12 6774 https://doi.org/10.1038/s41467-021-27029-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. D Smith J Simon J Baker Jr 2013 Applications of nanotechnology for immunology Nat Rev Immunol 13 592 605 https://doi.org/10.1038/nri3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. I Balke A Zeltins 2019 Use of plant viruses and virus-like particles for the creation of novel vaccines Adv Drug Deliv Rev 145 119 129 https://doi.org/10.1016/j.addr.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  15. S Nooraei H Bahrulolum ZS Hoseini 2021 Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers J Nanobiotechnology 19 59 https://doi.org/10.1186/s12951-021-00806-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R Usha JB Rohll VE Spall 1993 Expression of an animal virus antigenic site on the surface of a plant virus particle Virology 197 366 374 https://doi.org/10.1006/viro.1993.1598

    Article  CAS  PubMed  Google Scholar 

  17. TH Chen CC Hu JT Liao 2017 Production of Japanese encephalitis virus antigens in plants using bamboo mosaic virus-based vector Front Microbiol 8 788 https://doi.org/10.3389/fmicb.2017.00788

    Article  PubMed  PubMed Central  Google Scholar 

  18. ME Laliberté-Gagné M Bolduc C Garneau 2021 Modulation of antigen display on PapMV nanoparticles influences its immunogenicity Vaccines (Basel) 9 33 https://doi.org/10.3390/vaccines9010033

    Article  CAS  PubMed  Google Scholar 

  19. MN Jagadish SJ Edwards MB Hayden 1996 Chimeric potyvirus-like particles as vaccine carriers Intervirology 39 85 92 https://doi.org/10.1159/000150479

    Article  CAS  PubMed  Google Scholar 

  20. MN Jagadish RC Hamilton CS Fernandez 1993 High level production of hybrid potyvirus-like particles carrying repetitive copies of foreign antigens in Escherichia coli Biotechnology (N Y) 11 1166 1170 https://doi.org/10.1038/nbt1093-1166

    Article  CAS  PubMed  Google Scholar 

  21. M Saini S Vrati 2003 A Japanese encephalitis virus peptide present on Johnson grass mosaic virus-like particles induces virus-neutralizing antibodies and protects mice against lethal challenge J Virol 77 3487 3494 https://doi.org/10.1128/jvi.77.6.3487-3494.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MM Bradford 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem 72 248 254 https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  23. L Tomljenovic CA Shaw 2011 Aluminum vaccine adjuvants: are they safe? Curr Med Chem 18 2630 2637 https://doi.org/10.2174/092986711795933740

    Article  CAS  PubMed  Google Scholar 

  24. P Marrack AS McKee MW Munks 2009 Towards an understanding of the adjuvant action of aluminium Nat Rev Immunol 9 287 293 https://doi.org/10.1038/nri2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. H Miki C Nakahashi-Oda T Sumida 2015 Involvement of CD300a phosphatidylserine immunoreceptor in aluminum salt adjuvant-induced Th2 responses J Immunol 194 5069 5076 https://doi.org/10.4049/jimmunol.1402915

    Article  CAS  PubMed  Google Scholar 

  26. AB Enriquez A Izzo SM Miller 2021 Advancing adjuvants for Mycobacterium tuberculosis therapeutics Front Immunol 12 740117 https://doi.org/10.3389/fimmu.2021.740117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. AR Franco F Peri 2021 Developing new anti-tuberculosis vaccines: focus on adjuvants Cells 10 78 https://doi.org/10.3390/cells10010078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J Zepeda-Cervantes JO Ramírez-Jarquín L Vaca 2020 Interaction between virus-like particles (VLPs) and pattern recognition receptors (PRRs) from dendritic cells (DCs): toward better engineering of VLPs Front Immunol 11 1100 https://doi.org/10.3389/fimmu.2020.01100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. AM Avalos HL Ploegh 2014 Early BCR events and antigen capture, processing, and loading on MHC Class II on B cells Front Immunol 5 92 https://doi.org/10.3389/fimmu.2014.00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. AS Mustafa F Oftung HA Amoudy 2000 Multiple epitopes from the Mycobacterium tuberculosis ESAT-6 antigen are recognized by antigen-specific human T cell lines Clin Infect Dis 30 Suppl 3 S201 S205 https://doi.org/10.1086/313862

    Article  CAS  PubMed  Google Scholar 

  31. JS Spencer HJ Kim AM Marques 2004 Comparative analysis of B- and T-cell epitopes of Mycobacterium leprae and Mycobacterium tuberculosis culture filtrate protein 10 Infect Immun 72 3161 3170 https://doi.org/10.1128/IAI.72.6.3161-3170.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. H Plchova T Moravec H Hoffmeisterova 2011 Expression of human papillomavirus 16 E7ggg oncoprotein on N- and C-terminus of Potato virus X coat protein in bacterial and plant cells Protein Expr Purif 77 146 152 https://doi.org/10.1016/j.pep.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  33. G Desalegn A Tsegaye D Gebreegziabiher 2019 Enhanced IFN-γ, but not IL-2, response to Mycobacterium tuberculosis antigens in HIV/latent TB co-infected patients on long-term HAART BMC Immunol 20 35 https://doi.org/10.1186/s12865-019-0317-9

    Article  PubMed  PubMed Central  Google Scholar 

  34. PS Renshaw P Panagiotidou A Whelan 2002 Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence J Biol Chem 277 21598 21603 https://doi.org/10.1074/jbc.M201625200

    Article  CAS  PubMed  Google Scholar 

  35. TH Chen CC Hu CW Lee 2021 Stable display of artificially long foreign antigens on chimeric Bamboo mosaic virus particles Viruses 13 572 https://doi.org/10.3390/v13040572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. I Kalnciema D Skrastina V Ose 2012 Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches Mol Biotechnol 52 129 139 https://doi.org/10.1007/s12033-011-9480-9

    Article  CAS  PubMed  Google Scholar 

  37. CA Manuel-Cabrera AA Vallejo-Cardona E Padilla-Camberos 2016 Self-assembly of hexahistidine-tagged tobacco etch virus capsid protein into microfilaments that induce IgG2-specific response against a soluble porcine reproductive and respiratory syndrome virus chimeric protein Virol J 13 196 https://doi.org/10.1186/s12985-016-0651-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. KB Narayanan SS Han 2018 Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy Virus Genes 54 623 637 https://doi.org/10.1007/s11262-018-1583-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mepco Schlenk Engineering College, Sivakasi, for the support and facility to carry out this work. We thank DBT (Department of Biotechnology), IISc (Indian Institute of Science, Bangalore) partnership program—Phase II IISc and Tamilnadu Agricultural University, Coimbatore, for providing facility to carry out TEM analysis. We thank Mrs. M. Indiraleka, Assistant Professor, Mepco Schlenk Engineering College, Sivakasi, for assisting us in mice immunization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Stephen Raj.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Princess, R., Stephen Raj, M.L. Engineering potyvirus-like particles to display multiple copies of tuberculosis antigens. Biotechnol Bioproc E (2024). https://doi.org/10.1007/s12257-024-00089-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12257-024-00089-3

Keywords

Navigation