Skip to main content
Log in

Assessment of pulsed dielectrophoretic-field flow fractionation separation coupled with fibre-optic detection on a lab-on-chip as a technique to separate similar bacteria cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study addresses the challenge of separating bacteria with similar structures such as Escherichia coli and Aeromonas hydrophila. This approach employs pulsed field dielectrophoresis assisted by laminar flow fractionation in a lab-on-a-chip system with integrated optical detection. Bacterial cells passed through 30-µm microelectrodes subjected at 1 MHz and 14 V peak-to-peak in pulsed mode, while fluid flow carried bacteria towards the chamber’s end. The on-and-off electric field at specific pulse intervals expose bacterial cells to diverse forces, including kinetics, dielectrophoresis, gravity, drag, and diffusion, resulting in a net force facilitating their movement. Variations of pulsing time, flow rates, and voltage were investigated to identify the optimal combination for efficient separation. Next, the bacteria were detected using an optical fibre based on their absorbance. Results demonstrated a 30% separation efficiency in 90 min at 9.6 μL min−1 flow rates, 4 s pulsing time, and 40 μS cm−1 medium conductivity. A. hydrophila aggregates experienced greater DEP force and retained at microelectrodes during electric field application compared to E. coli, which moved faster towards optical detection. The separation mechanism with and without electric field was different, and precise control of cell movement during field-off periods is important to minimize uncontrolled diffusion. While the optical detection part has been successful, longer time and separation length are recommended for better separation. A carefully tuned combination of pulsing time, flow rates, voltage, and microelectrode design is crucial for this integrated lab-on-chip system to be efficient for separating and detecting closely related microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li T, Wang E, Dong S (2010) Lead (II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection. Anal Chem 82:1515–1520. https://doi.org/10.1021/ac902638v

    Article  CAS  PubMed  Google Scholar 

  2. Faye D, Lefevre JP, Delaire JA et al (2012) A selective lead sensor based on a fluorescent molecular probe grafted on a PDMS microfluidic chip. J Photochem Photobiol A Chem 234:115–122. https://doi.org/10.1016/j.jphotochem.2012.01.006

    Article  CAS  Google Scholar 

  3. Cetin AE, Coskun AF, Galarreta BC et al (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3:e122. https://doi.org/10.1038/lsa.2014.3

    Article  CAS  Google Scholar 

  4. Musayev J, Adlgüzel Y, Külah H et al (2014) Label-free DNA detection using a charge sensitive CMOS microarray sensor chip. IEEE Sens J 14:1608–1616. https://doi.org/10.1109/JSEN.2014.2301693

    Article  ADS  CAS  Google Scholar 

  5. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251. https://doi.org/10.1039/C3LC50169H

    Article  CAS  PubMed  Google Scholar 

  6. Merola F, Memmolo P, Miccio L et al (2015) Diagnostic tools for lab-on-chip applications based on coherent imaging microscopy. Proc IEEE 103:192–204. https://doi.org/10.1109/JPROC.2014.2375374

    Article  CAS  Google Scholar 

  7. Jolly P, Rainbow J, Regoutz A et al (2019) A PNA-based lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification. Biosens Bioelectron 123:244–250. https://doi.org/10.1016/j.bios.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi A, Fukuoka T, Takahashi R et al (2016) Dielectrophoresis-enabled surface enhanced Raman scattering on gold-decorated polystyrene microparticle in micro-optofluidic devices for high-sensitive detection. Sens Actuators B Chem 230:94–100. https://doi.org/10.1016/j.snb.2016.02.023

    Article  CAS  Google Scholar 

  9. Ohlsson P, Evander M, Petersson K et al (2016) Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal Chem 88:9403–9411. https://doi.org/10.1021/acs.analchem.6b00323

    Article  CAS  PubMed  Google Scholar 

  10. Pham QN, Trinh KTL, Jung SW et al (2018) Microdevice-based solid-phase polymerase chain reaction for rapid detection of pathogenic microorganisms. Biotechnol Bioeng 115:2194–2204. https://doi.org/10.1002/bit.26734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hidi IJ, Heidler J, Weber K et al (2016) Ciprofloxacin: pH-dependent SERS signal and its detection in spiked river water using LoC-SERS. Anal Bioanal Chem 408:8393–8401. https://doi.org/10.1007/s00216-016-9957-2

    Article  CAS  PubMed  Google Scholar 

  12. Costella M, Avenas Q, Frénéa-Robin M et al (2019) Dielectrophoretic cell trapping for improved surface plasmon resonance imaging sensing. Electrophoresis 40:1417–1425. https://doi.org/10.1002/elps.201800439

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Hansen O, Petersen PK et al (2006) Dielectrophoresis microsystem with integrated flow cytometers for on-line monitoring of sorting efficiency. Electrophoresis 27:5081–5092. https://doi.org/10.1002/elps.200600422

    Article  CAS  PubMed  Google Scholar 

  14. Wang XB, Vykoukal J, Becker FF et al (1998) Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation. Biophys J 74:2689–2701. https://doi.org/10.1016/S0006-3495(98)77975-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maruyama H, Kotani K, Masuda T et al (2011) Nanomanipulation of single influenza virus using dielectrophoretic concentration and optical tweezers for single virus infection to a specific cell on a microfluidic chip. Microfluid Nanofluidics 10:1109–1117. https://doi.org/10.1007/s10404-010-0739-4

    Article  CAS  Google Scholar 

  16. Ding J, Lawrence RM, Jones PV et al (2016) Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Analyst 141:1997–2008. https://doi.org/10.1039/C5AN02430G

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhattacharya S, Chao TC, Ariyasinghe N et al (2014) Selective trapping of single mammalian breast cancer cells by insulator-based dielectrophoresis. Anal Bioanal Chem 406:1855–1865. https://doi.org/10.1007/s00216-013-7598-2

    Article  CAS  PubMed  Google Scholar 

  18. Song Y, Yang J, Shi X et al (2012) DC dielectrophoresis separation of marine algae and particles in a microfluidic chip. Sci China Chem 55:524–530. https://doi.org/10.1007/s11426-012-4533-x

    Article  CAS  Google Scholar 

  19. Wang X, Yang J, Gascoyne PR (1999) Role of peroxide in AC electrical field exposure effects on friend murine erythroleukemia cells during dielectrophoretic manipulations. Biochim Biophys Acta 1426:53–68. https://doi.org/10.1016/s0304-4165(98)00122-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang Y, Joo S, Duhon M et al (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371. https://doi.org/10.1021/ac011273v

    Article  CAS  PubMed  Google Scholar 

  21. Esteban-Ferrer D, Edwards MA, Fumagalli L et al (2014) Electric polarization properties of single bacteria measured with electrostatic force microscopy. ACS Nano 8:9843–9849. https://doi.org/10.1021/nn5041476

    Article  CAS  PubMed  Google Scholar 

  22. Lewpiriyawong N, Kandaswamy K, Yang C et al (2011) Microfluidic characterization and continuous separation of cells and particles using conducting poly(dimethyl siloxane) electrode induced alternating current-dielectrophoresis. Anal Chem 83:9579–9585. https://doi.org/10.1021/ac202137y

    Article  CAS  PubMed  Google Scholar 

  23. Khoshmanesh K, Baratchi S, Tovar-Lopez FJ et al (2012) On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluid Nanofluidics 12:597–606. https://doi.org/10.1007/s10404-011-0900-8

    Article  CAS  Google Scholar 

  24. Han CH, Woo SY, Bhardwaj J et al (2018) Rapid and selective concentration of bacteria, viruses, and proteins using alternating current signal superimposition on two coplanar electrodes. Sci Rep 8:14942. https://doi.org/10.1038/s41598-018-33329-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lapizco-Ecinas BH, Simmons BA, Cummings EB et al (2004) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579. https://doi.org/10.1021/ac034804j

    Article  CAS  Google Scholar 

  26. Narji NFNM, Ahmad MR (2020) Dielectrophoresis-based microfluidic device for separation of potential cancer cells. Bull Electr Eng Inform 9:2270–2277. https://doi.org/10.11591/eei.v9i6.2224

    Article  Google Scholar 

  27. Park J, Kim B, Choi SK et al (2005) An efficient cell separation system using 3D-asymmetric microelectrodes. Lab Chip 5:1264–1270. https://doi.org/10.1039/B506803G

    Article  CAS  PubMed  Google Scholar 

  28. An J, Lee J, Lee SH et al (2009) Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS). Anal Bioanal Chem 394:801–809. https://doi.org/10.1007/s00216-009-2743-7

    Article  CAS  PubMed  Google Scholar 

  29. Kawabata T, Washizu M (2001) Dielectrophoretic detection of molecular bindings. IEEE Trans Ind Appl 37:1625–1633. https://doi.org/10.1109/28.968170

    Article  CAS  Google Scholar 

  30. Müller T, Gradl G, Howitz S et al (1999) A 3-D microelectrode system for handling and caging single cells and particles. Biosens Bioelectron 14:247–256. https://doi.org/10.1016/S0956-5663(99)00006-8

    Article  Google Scholar 

  31. Aldaeus F, Lin Y, Amberg G et al (2006) Multi-step dielectrophoresis for separation of particles. J Chromatogr A 1131:261–266. https://doi.org/10.1016/j.chroma.2006.07.022

    Article  CAS  PubMed  Google Scholar 

  32. Morgan H, Green NG (2003) AC electrokinetics colloids and nanoparticles. Research Studies Press

  33. Kim MS, Sim TS, Kim YJ et al (2012) SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Lab Chip 12:2874–2880. https://doi.org/10.1039/C2LC40065K

    Article  CAS  PubMed  Google Scholar 

  34. Okada T (2007) Field flow fractionation: electric fields. In: Wilson ID (ed) Encyclopedia of separation science. Academic Press

  35. Abel AP, Weller MG, Duveneck GL et al (1996) Fiber-optic evanescent wave biosensor for the detection of oligonucleotides. Anal Chem 68:2905–2912. https://doi.org/10.1021/ac960071+

    Article  CAS  PubMed  Google Scholar 

  36. Wolfbeis OS (2000) Fiber-optic chemical sensors and biosensors. Anal Chem 72:81R-89R. https://doi.org/10.1021/ac060490z

    Article  CAS  PubMed  Google Scholar 

  37. Echeverría JC, Faustini M, Garrido JJ (2016) Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs. Sens Actuators B Chem 222:1166–1174. https://doi.org/10.1016/j.snb.2015.08.010

    Article  CAS  Google Scholar 

  38. Brückner M, Becker K, Popp J et al (2015) Fiber array based hyperspectral Raman imaging for chemical selective analysis of malaria-infected red blood cells. Anal Chim Acta 894:76–84. https://doi.org/10.1016/j.aca.2015.08.025

    Article  CAS  PubMed  Google Scholar 

  39. Yao BC, Wu Y, Yu CB et al (2016) Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection. Sci Rep 6:23706. https://doi.org/10.1038/srep23706

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foguel MV, Ton XA, Zanoni MV et al (2015) A molecularly imprinted polymer-based evanescent wave fiber optic sensor for the detection of basic red 9 dye. Sens Actuators B Chem 218:222–228. https://doi.org/10.1016/j.snb.2015.05.007

    Article  CAS  Google Scholar 

  41. Nguyen TT, Trinh KTL, Yoon WJ et al (2017) Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sens Actuators B Chem 242:1–8. https://doi.org/10.1016/j.snb.2016.10.137

    Article  CAS  Google Scholar 

  42. Kamuri MF, Zainal Abidin Z, Yaacob MH et al (2019) Separation and detection of Escherichia coli and Saccharomyces cerevisiae using a microfluidic device integrated with an optical fibre. Biosensors (Basel) 9:40. https://doi.org/10.3390/bios9010040

    Article  CAS  PubMed  Google Scholar 

  43. Kamuri F, Zainal Abidin Z, Yunus NAM et al (2015) Optimization on the preparation of microfluidic channel using dry film resist. In: Proceedings of 2015 international conference on smart sensors and application (ICSSA), Grand Seasons Hotel, Kuala Lumpur, 26–28 May 2015

  44. Fu LM, Shu WE, Wang YN (2012) Particle analysis and differentiation using a photovoltaic cell. J Micromech Microeng 22:105023. https://doi.org/10.1088/0960-1317/22/10/105023

    Article  CAS  Google Scholar 

  45. Pethig R (1996) Dielectrophoresis: using inhomogeneous AC electrical fields to separate and manipulate cells. Crit Rev Biotechnol 16:331–348. https://doi.org/10.3109/07388559609147425

    Article  Google Scholar 

  46. Wong PK, Chen CY, Wang TH et al (2004) Electrokinetic bioprocessor for concentrating cells and molecules. Anal Chem 76:6908–6914. https://doi.org/10.1021/ac049479u

    Article  CAS  PubMed  Google Scholar 

  47. Suehiro J, Hamada R, Noutomi D et al (2003) Selective detection of viable bacteria using dielectrophoretic impedance measurement method. J Electrostat 57:157–168. https://doi.org/10.1016/S0304-3886(02)00124-9

    Article  Google Scholar 

  48. Pethig R (2010) Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:022811. https://doi.org/10.1063/1.3456626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones TB (2005) Electromechanics of particles. Cambridge University Press, New York

    Google Scholar 

  50. Wukitsch MW, Petterson MT, Tobler DR et al (1988) Pulse oximetry: analysis of theory, technology, and practice. J Clin Monit 4:290–301. https://doi.org/10.1007/BF01617328

    Article  CAS  PubMed  Google Scholar 

  51. Gauri S, Abidin ZZ, Kamuri MF et al (2017) Detection of Aeromonas hydrophila using fiber optic microchannel sensor. J Sens 2017:8365189. https://doi.org/10.1155/2017/8365189

    Article  CAS  Google Scholar 

  52. Gascoyne PR, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE Inst Electr Electron Eng 92:22–42. https://doi.org/10.1109/JPROC.2003.820535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Malaysia Ministry of Science, Technology, and Innovation for funding this project (SF-02-01-04-SF1214), Majlis Amanah Rakyat (MARA) for providing student financial assistance, Dr. Zalini Yunus from Science and Technology Research Institute for Defence (STRIDE), Malaysia Ministry of Defence for providing the microbes and Mr. Ashaari Yusof from TM R&D, Malaysia for providing the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zurina Zainal Abidin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamuri, M.F., Abidin, Z.Z., Yaacob, M.H. et al. Assessment of pulsed dielectrophoretic-field flow fractionation separation coupled with fibre-optic detection on a lab-on-chip as a technique to separate similar bacteria cells. Biotechnol Bioproc E 29, 141–156 (2024). https://doi.org/10.1007/s12257-024-00001-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-024-00001-z

Keywords

Navigation