Skip to main content
Log in

Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Detecting pathogenic bacteria in food or other biological samples with lab-on-a-chip (LOC) devices requires several sample preparation steps prior to analysis which commonly involves cleaning complex sample matrices of large debris. This often underestimated step is important to prevent these larger particles from clogging devices and to preserve initial concentrations when LOC techniques are used to concentrate or isolate smaller target microorganisms for downstream analysis. In this context, we developed a novel microfluidic system for membrane-free cleaning of biological samples from debris particles by combining hydrodynamic focusing and inertial lateral migration effects. The microfluidic device is fabricated using thermoplastic elastomers being compatible with thermoforming fabrication techniques leading to low-cost single-use devices. Microfluidic chip design and pumping protocols are optimized by investigating diffusive losses numerically with coupled Navier–Stokes and convective-diffusion theoretical models. Stability of inertial lateral migration and separation of debris is assessed through fluorescence microscopy measurements with labelled particles serving as a model system. Efficiency of debris cleaning is experimentally investigated by monitoring microchip outlets with in situ optical turbidity sensors, while retention of targeted pathogens (i.e., Listeria monocytogenes) within the sample stream is assessed through bacterial culture techniques. Optimized pumping protocols can remove up to 50 % of debris from ground beef samples while percentage for preserved microorganisms can account for 95 % in relatively clean samples. However, comparison between inoculated turbid and clean samples (i.e., with and without ground beef debris) indicate some degree of interference between debris inertial lateral migration and hydrodynamic focusing of small microorganisms. Although this interference can lead to significant decrease in chip performance through loss of target bacteria, it remains possible to reach 70 % for sample recovery and more than 50 % for debris removal even in the most turbid samples tested. Due to the relatively simple design, the robustness of the inertial migration effect itself, the high operational flow rates and fabrication methods that leverage low-cost materials, the proposed device can have an impact on a wide range of applications where high-throughput separation of particles and biological species is of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • H. Amini, E. Sollier, W.M. Weaver, D. Di Carlo, Proc. Natl. Acad. Sci. U. S. A. 109(29), 11593–11598 (2012)

    Article  Google Scholar 

  • A.A.S. Bhagat, S.S. Kuntaegowdanahalli, I. Papautsky, Microfluid. Nanofluid. 7(2), 217–226 (2009)

    Article  Google Scholar 

  • T. Boland, A.R. Latour, F.J. Stutzenberger, Handbook of bacterial adhesion: principles, methods and applications (Humana Press, Totowa, 2000)

    Google Scholar 

  • D. Brassard, L. Clime, K. Li, M. Geissler, C. Miville-Godin, E. Roy, T. Veres, Lab Chip 14, 4099–4107 (2011)

    Article  Google Scholar 

  • Y.-J. Chiu, S.H. Cho, Z. Mei, V. Lien, T.-F. Wu, Y.-H. Lo, Lab Chip 13(9), 1803–1809 (2013)

    Article  Google Scholar 

  • L. Clime, B. Le Drogoff, S. Zhao, Z. Zhang, T. Veres, Int. J. Nanotechnol. 5(9–12), 1268–1305 (2008)

    Article  Google Scholar 

  • D. Di Carlo, Lab Chip 9(21), 3038–3046 (2009)

    Article  Google Scholar 

  • D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Natl. Acad. Sci. U. S. A. 104(48), 18892–18897 (2007)

    Article  Google Scholar 

  • A. Escarpa, Lab Chip (2014). doi:10.1039/C4LC00172A

    Google Scholar 

  • J.M. Farber, P.I. Peterkin, Microbiol. Mol. Biol. R. 55, 476–511 (1991)

    Google Scholar 

  • M. Geissler, S. Isabel, B. Voisin, C. Fauvel, M. Boissinot, M. G. Bergeron, T. Veres, J. Bioterr. Biodef. 3, 119-111-116 (2012).

  • S.C. Hur, S.-E. Choi, S. Kwon, D. Di Carlo, Appl. Phys. Lett. 99(4), 044101 (2011)

    Article  Google Scholar 

  • S. Isabel, M. Boissinot, I. Charlebois, C.M. Fauvel, L.-E. Shi, J.-C. Levesque, A.T. Paquin, M. Bastien, G. Stewart, E. Leblanc, S. Sato, M.G. Bergeron, Appl. Environ. Microbiol. 78, 1505–1512 (2012)

    Article  Google Scholar 

  • R.F. Ismagilov, A.D. Stroock, P.J.A. Kenis, G. Whitesides, H.A. Stone, Appl. Phys. Lett. 76(17), 2376–2378 (2000)

    Article  Google Scholar 

  • A.E. Kamholz, P. Yager, Biophys. J. 80, 155–160 (2001)

    Article  Google Scholar 

  • L.A. Kuznetsova, W.T. Coakley, Biosens. Bioelectron. 22(8), 3883–3892 (2007)

    Article  Google Scholar 

  • B.H. Lapizco-Encinas, B.A. Simmons, E.B. Cummings, Y. Fintschenko, Anal. Chem. 76(6), 1571–1579 (2004)

    Article  Google Scholar 

  • W.W.-F. Leung, Centrifugal separation in biotechnology (Elsevier/Academic Press, Oxford, 2007)

    Google Scholar 

  • D.V. Lim, J.M. Simpson, E.A. Kearns, M.F. Kramer, Clin. Microbiol. Rev. 18, 583–607 (2005)

    Article  Google Scholar 

  • M. Madou, J. Zoval, G. Jia, H. Kido, Annu. Rev. Biomed. Eng. 8, 601–628 (2006)

    Article  Google Scholar 

  • D. Mark, S. Haeberle, G. Roth, F. von Stetten, R. Zengerle, Chem. Soc. Rev. 39, 1153–1182 (2010)

    Article  Google Scholar 

  • J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35, 491–499 (2002)

    Article  Google Scholar 

  • M. Nasir, D.R. Mott, M.J. Kennedy, J.P. Golden, F.S. Ligler, Microfluid. Nanofluid. 11(2), 119–128 (2011)

    Article  Google Scholar 

  • S. Neethirajan, I. Kobayashi, M. Nakajima, D. Wu, S. Nandagopal, F. Lin, Lab Chip 11, 1574–1586 (2011)

    Article  Google Scholar 

  • H.A. Nieuwstadt, R. Seda, D.S. Li, J.B. Fowlkes, J.L. Bull, Biomed. Microdev. 13(1), 97–105 (2011)

    Article  Google Scholar 

  • E. Roy, M. Geissler, J.-C. Galas, T. Veres, Microfluid. Nanofluid. 11, 235–244 (2011)

    Article  Google Scholar 

  • P.G. Saffman, J. Fluid. Mech. 22(2), 385–385 (1965)

  • P.G. Saffman, J. Fluid. Mech. 31(1), 624–624 (1968)

  • G. Segre, A. Silberberg, Nature 189, 209–209 (1961)

    Article  Google Scholar 

  • K. Tanaka, J. Chem. Soc. Faraday. Trans. 1(74), 1879–1881 (1978)

    Article  Google Scholar 

  • H. Wei, B.-H. Chueh, H. Wu, E.W. Hall, C.-W. Li, R. Schirhagl, J.-M. Lin, R.N. Zare, Lab Chip 11(2), 238–245 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Franco Pagotto and Karine Hébert (Health Canada) for providing us with the Listeria strain used in this study, Dr. Virginie Barrère, Dr. Geneviève Marchand and Dr. Dominic Lambert (Health Canada) for critical review of the manuscript, and Hélène Roberge (NRC) for SEM imaging. We also thank Réseau québécois de calcul de haute performance (RQCHP) for providing computational facilities. This study was co-funded by Health Canada and the National Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor Veres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clime, L., Hoa, X.D., Corneau, N. et al. Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration. Biomed Microdevices 17, 17 (2015). https://doi.org/10.1007/s10544-014-9905-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-014-9905-x

Keywords

Navigation