Skip to main content
Log in

Convolution Neural Network Approaches for Cancer Cell Image Classification

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently, research incorporating the benefits of deep learning in the application of cancer cell classification and analysis has been actively conducted. In this paper, we investigated examples of binary-class classification and multi-class classification of cancer cell image data of commonly occurring types of cancer worldwide, such as cervical cancer, breast cancer, lung cancer, and colon cancer, using convolutional neural networks (CNNs) models. For instance, some studies explored the utilization of transfer learning, leveraging a pre-trained CNN model is used as a starting point for additional training on a specific cancer cell dataset. Cancer cells have irregular and abnormal growth, making accurate classification challenging. The application of deep learning techniques, such as CNN, for cancer cell classification has been able to solve these complex analysis problems and enable fast cancer cell classification results, leading to early detection of cancer. Indeed, most of the studies in this paper achieved high performance using CNN models, and this approach enables faster and more accurate confirmation of cancer cell classification results, leading to early detection of cancer. This shows the current trend of applying deep learning in the application of cancer cell classification and demonstrates the significant potential of deep learning to contribute to cancer research. Overall, we provide an overview of the current trend of applying deep learning in the field of cancer cell classification and expect that deep learning will open the way for more effective cancer diagnosis and treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. López, C., M. Lejeune, R. Bosch, A. Korzynska, M. García-Rojo, M.-T. Salvadó, T. Álvaro, C. Callau, A. Roso, and J. Jaén (2012) Digital image analysis in breast cancer: an example of an automated methodology and the effects of image compression. Stud. Health Technol. Inform. 179: 155–171.

    PubMed  Google Scholar 

  2. Rahaman, M. M., C. Li, Y. Yao, F. Kulwa, X. Wu, X. Li, and Q. Wang (2021) DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques. Comput. Biol. Med. 136: 104649.

    Article  PubMed  Google Scholar 

  3. Kitchener, H. C., R. Blanks, G. Dunn, L. Gunn, M. Desai, R. Albrow, J. Mather, D. N. Rana, H. Cubie, C. Moore, R. Legood, A. Gray, and S. Moss (2011) Automation-assisted versus manual reading of cervical cytology (MAVARIC): a randomised controlled trial. Lancet Oncol. 12: 56–64.

    Article  PubMed  Google Scholar 

  4. Xiao, Y., J. Wu, Z. Lin, and X. Zhao (2018) A deep learning-based multi-model ensemble method for cancer prediction. Comput. Methods Programs Biomed. 153: 1–9.

    Article  PubMed  Google Scholar 

  5. LeCun, Y., Y. Bengio, and G. Hinton (2015) Deep learning. Nature 521: 436–444.

    Article  CAS  PubMed  Google Scholar 

  6. Song, Z., S. Zou, W. Zhou, Y. Huang, L. Shao, J. Yuan, X. Gou, W. Jin, Z. Wang, X. Chen, X. Ding, J. Liu, C. Yu, C. Ku, C. Liu, Z. Sun, G. Xu, Y. Wang, X. Zhang, D. Wang, S. Wang, W. Xu, R. C. Davis, and H. Shi (2020) Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning. Nat. Commun. 11: 4294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta, K. and N. Chawla (2020) Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN. Procedia Comput. Sci. 167: 878–889.

    Article  Google Scholar 

  8. Albawi, S., T. A. Mohammed, and S. Al-Zawi (2017) Understanding of a convolutional neural network. Proceedings of the 2017 International Conference on Engineering and Technology (ICET). August 21–23. Antalya, Turkey.

  9. Gupta, A., P. J. Harrison, H. Wieslander, N. Pielawski, K. Kartasalo, G. Partel, L. Solorzano, A. Suveer, A. H. Klemm, O. Spjuth, I.-M. Sintorn, and C. Wählby (2019) Deep learning in image cytometry: a review. Cytometry A 95: 366–380.

    Article  PubMed  Google Scholar 

  10. Wu, J. (2017) Introduction to convolutional neural networks. https://jasoncantarella.com/downloads/CNN.pdf

  11. Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei (2015) ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115: 211–252.

    Article  Google Scholar 

  12. Pan S. J., and Q. Yang (2009) A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22: 1345–1359.

    Article  Google Scholar 

  13. Hospedales, T., A. Antoniou, P. Micaelli, and A. Storkey (2021) Meta-learning in neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44: 5149–5169.

    Google Scholar 

  14. Triantafillou, E., H. Larochelle, R. Zemel, and V. Dumoulin (2021) Learning a universal template for few-shot dataset generalization. arXivhttps://arxiv.org/abs/2105.07029

  15. Vinyals, O., C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra (2016) Matching networks for one shot learning. Proceedings of the 30th International Conference on Neural Information Processing Systems. December 5–10. Barcelona, Spain.

  16. Claesen M. and B. De Moor (2015) Hyperparameter search in machine learning. arXivhttps://arxiv.org/abs/1502.02127

  17. Choi, D., C. J. Shallue, Z. Nado, J. Lee, C. J. Maddison, and G. E. Dahl (2019) On empirical comparisons of optimizers for deep learning. arXivhttps://arxiv.org/abs/1910.05446

  18. Krizhevsky, A., I. Sutskever, and G. E. Hinton (2017) ImageNet classification with deep convolutional neural networks. Commun. ACM 60: 84–90.

    Article  Google Scholar 

  19. He, K., X. Zhang, S. Ren, and J. Sun (2016) Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27–30. Las Vegas, USA.

  20. Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger (2017) Densely connected convolutional networks. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21–26. Honolulu, USA.

  21. Hu, J., L. Shen, and G. Sun (2018) Squeeze-and-excitation networks. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18–23. Salt Lake City, USA.

  22. Amgad, M., H. Elfandy, H. Hussein, L. A. Atteya, M. A. T. Elsebaie, L. S. Abo Elnasr, R. A. Sakr, H. S. E. Salem, A. F. Ismail, A. M. Saad, J. Ahmed, M. A. T. Elsebaie, M. Rahman, I. A. Ruhban, N. M. Elgazar, Y. Alagha, M. H. Osman, A. M. Alhusseiny, M. M. Khalaf, A.-A. F. Younes, A. Abdulkarim, D. M. Younes, A. M. Gadallah, A. M. Elkashash, S. Y. Fala, B. M. Zaki, J. Beezley, D. R. Chittajallu, D. Manthey, D. A. Gutman, and L. A. D. Cooper (2019) Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics 35: 3461–3467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu, W., C. Li, X. Li, M. M. Rahaman, J. Ma, Y. Zhang, H. Chen, W. Liu, C. Sun, Y. Yao, H. Sun, and M. Grzegorzek (2022) GasHisSDB: a new gastric histopathology image dataset for computer aided diagnosis of gastric cancer. Comput. Biol. Med. 142: 105207.

    Article  PubMed  Google Scholar 

  24. Spanhol, F. A., L. S. Oliveira C. Petitjean, and L. Heutte (2016) Breast cancer histopathological image classification using convolutional neural networks. Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN). July 24–29. Vancouver, BC, Canada.

  25. Minarno, A. E., K. M. Ghufron, T. S. Sabrila, L. Husniah, and F. D. S. Sumadi (2021) CNN based autoencoder application in breast cancer image retrieval. Proceedings of the 2021 International Seminar on Intelligent Technology and Its Applications (ISITIA). July 21–22. Surabaya, Indonesia.

  26. Spanhol, F. A., L. S. Oliveira, P. R. Cavalin, C. Petitjean, and L. Heutte (2017) Deep features for breast cancer histopathological image classification. Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). October 5–8. Banff, AB, Canada.

  27. Sitnik, D., G. Aralica, M. Hadžija, M. P. Hadžija, A. Pačić, M. M. Periša, L. Manojlović, K. Krstanac, A. Plavetić, and I. Kopriva (2021) A dataset and a methodology for intraoperative computer-aided diagnosis of a metastatic colon cancer in a liver. Biomed. Signal Process. Control 66: 102402.

    Article  Google Scholar 

  28. Amgad, M., L. A. Atteya, H. Hussein, K. H. Mohammed, E. Hafiz, M. A. T. Elsebaie, A. M. Alhusseiny, M. A. AlMoslemany, A. M. Elmatboly, P. A. Pappalardo, R. A. Sakr, P. Mobadersany, A. Rachid, An. M. Saad, A. M. Alkashash, I. A. Ruhban, A. Alrefai, N. M. Elgazar, A. Abdulkarim, A.-A. Farag, A. Etman, A. G. Elsaeed, Y. Alagha, Y. A. Amer, A. M. Raslan, M. K. Nadim, M. A. T. Elsebaie, A. Ayad, L. E. Hanna, A. Gadallah, M. Elkady, B. Drumheller, D. Jaye, D. Manthey, D. A. Gutman, H. Elfandy, and L. A. D. Cooper (2021) Nucls: A scalable crowdsourcing, deep learning approach and dataset for nucleus classification, localization and segmentation. https://arxiv.org/abs/2102.09099.

  29. Graham, S., D. Epstein, and N. Rajpoot (2020) Dense steerable filter CNNs for exploiting rotational symmetry in histology images. IEEE Trans. Med. Imaging 39: 4124–4136.

    Article  PubMed  Google Scholar 

  30. Shi, L., X. Li, W. Hu, H. Chen, J. Chen, Z. Fan, M. Gao, Y. Jing, G. Lu, D. Ma, Z. Ma, Q. Meng, D. Tang, H. Sun, M. Grzegorzek, S. Qi, Y. Teng, and C. Li (2023) EBHI-Seg: a novel enteroscope biopsy histopathological hematoxylin and eosin image dataset for image segmentation tasks. Front. Med. (Lausanne) 10: 1114673.

    Article  PubMed  Google Scholar 

  31. Bejnordi, B. E., M. Veta, P. J. van Diest, B. van Ginneken, N. Karssemeijer, G. Litjens, J. A. W. M. van der Laak, the CAMELYON16 Consortium, M. Hermsen, Q. F. Manson, M. Balkenhol, O. Geessink, N. Stathonikos, M. C. van Dijk, P. Bult, F. Beca, A. H. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H.-J. Lin, P.-A. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M. Ü. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y.-W. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka, H. Matsuda, H. A. Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno, M. M. Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu, and R. Venâncio (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318: 2199–2210.

    Article  Google Scholar 

  32. Sornapudi, S., G. T. Brown, Z. Xue, R. Long, L. Allen, and S. Antani (2019) Comparing deep learning models for multi-cell classification in liquid-based cervical cytology image. AMIA Annu. Symp. Proc. 2019: 820–827.

    PubMed  Google Scholar 

  33. Aresta, G., T. Araújo, S. Kwok, S. S. Chennamsetty, M. Safwan, V. Alex, B. Marami, M. Prastawa, M. Chan, M. Donovan, G. Fernandez, J. Zeineh, M. Kohl, C. Walz, F. Ludwig, S. Braunewell, M. Baust, Q. D. Vu, M. N. N. To, E. Kim, J. T. Kwak, S. Galal, V. Sanchez-Freire, N. Brancati, M. Frucci, D. Riccio, Y. Wang, L. Sun, K. Ma, J. Fang, I. Kone, L. Boulmane, A. Campilho, C. Eloy, A. Polónia, and P. Aguiar (2019) BACH: grand challenge on breast cancer histology images. Med. Image Anal. 56: 122–139.

    Article  PubMed  Google Scholar 

  34. Borkowski, A. A., M. M. Bui, L. B. Thomas, C. P. Wilson, L. A. DeLand, and S. M. Mastorides (2019) Lung and colon cancer histopathological image dataset (LC25000). arXivhttps://arxiv.org/abs/1912.12142

  35. Padilla, R., S. L. Netto, and E. A. B. da Silva (2020) A survey on performance metrics for object-detection algorithms. Proceedings of 2020 International Conference on Systems, Signals and Image Processing (IWSSIP). July 1–3. Niteroi, Brazil.

  36. Tharwat, A. (2020) Classification assessment methods. Appl. Comput. Inform. 17: 168–192.

    Article  Google Scholar 

  37. Hossin, M. and M. N. Sulaiman (2015) A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process 5: 1–11.

    Article  Google Scholar 

  38. Pattarone, G., L. Acion, M. Simian, R. Mertelsmann, M. Follo, and E. Iarussi (2021) Learning deep features for dead and living breast cancer cell classification without staining. Sci. Rep. 11: 10304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khan, S., N. Islam, Z. Jan, I. U. Din, and J. J. P. C. Rodrigues (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 125: 1–6.

    Article  Google Scholar 

  40. Yu, S., X. Feng, B. Wang, H. Dun, S. Zhang, R. Zhang, and X. Huang (2021) Automatic classification of cervical cells using deep learning method. IEEE Access 9: 32559–32568.

    Article  Google Scholar 

  41. Nguyen, L. D., D. Lin, Z. Lin, and J. Cao (2018) Deep CNNs for microscopic image classification by exploiting transfer learning and feature concatenation. Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS). May 27–30. Florence, Italy.

  42. Araújo, F. H. D., R. R. V. Silva, D. M. Ushizima, M. T. Rezende, C. M. Carneiro, A. G. Campos Bianchi, and F. N. S. Medeiros (2019) Deep learning for cell image segmentation and ranking. Comput. Med. Imaging Graph. 72: 13–21.

    Article  PubMed  Google Scholar 

  43. Sarwinda, D., R. H. Paradisa, A. Bustamam, and P. Anggia (2021) Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Comput. Sci. 179: 423–431.

    Article  Google Scholar 

  44. Golatkar, A., D. Anand, and A. Sethi (2018) Classification of breast cancer histology using deep learning. pp. 837–844. In: A. Campilho, F. Karray, and B. ter Haar Romeny (eds.). ICIAR 2018: Image Analysis and Recognition. Springer, Cham.

    Google Scholar 

  45. Oei, R. W., G. Hou, F. Liu, J. Zhong, J. Zhang, Z. An, L. Xu, and Y. Yang (2019) Convolutional neural network for cell classification using microscope images of intracellular actin networks. PLoS One 14: e0213626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. . Coudray, N., P. S. Ocampo, T. Sakellaropoulos, N. Narula, M. Snuderl, D. Fenyö, A. L. Moreira, N. Razavian, and A. Tsirigos (2018) Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 24: 1559–1567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68: 394–424. (Erratum published 2020, CA Cancer J. Clin. 70: 313).

    Article  PubMed  Google Scholar 

  48. Jantzen, J., J. Norup, G. Dounias, and B. Bjerregaard (2005) Papsmear benchmark data for pattern classification. Proceedings of NiSIS 2005: Nature inspired Smart Information Systems (NiSIS), EU co-ordination action. January 1. Albufeira, Portugal.

  49. Yamaguchi, H. and J. Condeelis (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773: 642–652.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2023 Inje University research grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sungtae Shin or Sehoon Jeong.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Shin, S. & Jeong, S. Convolution Neural Network Approaches for Cancer Cell Image Classification. Biotechnol Bioproc E 28, 707–719 (2023). https://doi.org/10.1007/s12257-023-0164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0164-7

Keywords

Navigation