Skip to main content
Log in

Optimization of Vacuum Frying Process for Sweet Potato Chip Manufacturing Using Response Surface Methodology and Artificial Neural Network Model

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2023

This article has been updated

Abstract

The purpose of this study was to optimize product yield and quality of the sweet potato chip manufacturing process in a pilot-scale industrial fryer using vacuum frying (VF) technology, response surface methodology (RSM), and artificial neural network (ANN) model. The variables, osmotic dehydration (OD) concentration, OD temperature, and VF temperature were designed to optimize the yield, oil content, and browning index (BI) of vacuum-fried sweet potato chips. Yield, oil content, and BI achieved optimal conditions for 52.46%, 10.65%, and 61.14 in RSM, and 53.52%, 11.58%, and 60.40 in ANN, respectively. Based on the statistical evaluation performance, the ANN model had a higher predictive performance than the RSM model. These findings highlight the high-quality pilot-scale manufacturing process along with a better statistical approach. Moreover, the optimized process can be used for the commercial production of vacuum-fried sweet potato chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Yolmeh, M. and S. M. Jafari (2017) Applications of response surface methodology in the food industry processes. Food Bioproc. Tech. 10: 413–433.

    Article  CAS  Google Scholar 

  2. Bezerra, M. A., R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76: 965–977.

    Article  CAS  PubMed  Google Scholar 

  3. Kim, D.-S., M. H. Choi, and H.-J. Shin (2021) Estimation of starch hydrolysis in sweet potato (Beni Haruka) based on storage period using nondestructive near-infrared spectrometry. Agriculture 11: 135.

    Article  CAS  Google Scholar 

  4. Das, M., N. Rajan, P. Biswas, and R. Banerjee (2022) A novel approach for resistant starch production from green banana flour using amylopullulanase. LWT 153: 112391.

    Article  CAS  Google Scholar 

  5. Okonkwo, C. E., O. I. Moses, C. Nwonuma, T. Abiola, B. O. Benjamin, J. O. Folorunsho, A. F. Olaniran, and Z. Pan (2022) Infrared and microwave as a dry blanching tool for Irish potato: product quality, cell integrity, and artificial neural networks (ANNs) modeling of enzyme inactivation kinetic. Innov. Food Sci. Emerg. Technol. 78: 103010.

    Article  CAS  Google Scholar 

  6. Yang, Q.-Q., R.-Y. Gan, D. Zhang, Y.-Y. Ge, L.-Z. Cheng, and H. Corke (2019) Optimization of kidney bean antioxidants using RSM & ANN and characterization of antioxidant profile by UPLC-QTOF-MS. LWT 114: 108321.

    Article  CAS  Google Scholar 

  7. Bhagya Raj, G. V. S. and K. K. Dash (2022) Comprehensive study on applications of artificial neural network in food process modeling. Crit. Rev. Food Sci. Nutr. 62: 2756–2783.

    Article  CAS  PubMed  Google Scholar 

  8. Tang, S. Y., J. S. Lee, S. P. Loh, and H. J. Tham (2017) Application of artificial neural network to predict colour change, shrinkage and texture of osmotically dehydrated pumpkin. IOP Conf. Ser.: Mater. Sci. Eng. 206: 012036.

    Article  Google Scholar 

  9. Onu, C. E., P. K. Igbokwe, J. T. Nwabanne, C. O. Nwajinka, and P. E. Ohale (2020) Evaluation of optimization techniques in predicting optimum moisture content reduction in drying potato slices. Artif. Intell. Agr. 4: 39–47.

    Google Scholar 

  10. Zhang, Q., A. S. Saleh, J. Chen, and Q. Shen (2012) Chemical alterations taken place during deep-fat frying based on certain reaction products: a review. Chem. Phys. Lipids 165: 662–681.

    Article  CAS  PubMed  Google Scholar 

  11. Mariscal, M. and P. Bouchon (2008) Comparison between atmospheric and vacuum frying of apple slices. Food Chem. 107: 1561–1569.

    Article  CAS  Google Scholar 

  12. Moreira, R. G. (2014) Vacuum frying versus conventional frying - An overview. Eur. J. Lipid Sci. Technol. 116: 723–734.

    Article  CAS  Google Scholar 

  13. Da Silva, P. F. and R. G. Moreira (2008) Vacuum frying of high-quality fruit and vegetable-based snacks. LWT 41: 1758–1767.

    Article  CAS  Google Scholar 

  14. Qiu, L., M. Zhang, Y. Wang, and B. Bhandari (2018) Effects of ultrasound pretreatments on the quality of fried sweet potato (Ipomea batatas) chips during microwave-assisted vacuum frying. J. Food Process Eng. 41: e12879.

    Article  Google Scholar 

  15. Su, Y., M. Zhang, B. Bhandari, and W. Zhang (2018) Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology. Ultrason. Sonochem. 44: 368–379.

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed, I., I. M. Qazi, and S. Jamal (2016) Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innov. Food Sci. Emerg. Technol. 34: 29–43.

    Article  CAS  Google Scholar 

  17. Feumba Dibanda, R., E. Panyoo Akdowa, A. Rani P, Q. Metsatedem Tongwa, and C. M. Mbofung F (2020) Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behaviour of some fruit peelings. Food Chem. 302: 125308.

    Article  CAS  PubMed  Google Scholar 

  18. Gramatikov, B. I. (2017) Detecting central fixation by means of artificial neural networks in a pediatric vision screener using retinal birefringence scanning. Biomed. Eng. Online 16: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Thoai, D. N., C. Tongurai, K. Prasertsit, and A. Kumar (2018) Predictive capability evaluation of RSM and ANN in modeling and optimization of biodiesel production from palm (Elaeisguineensis) oil. Int. J. Appl. Eng. Res. 13: 7529–7540.

    Google Scholar 

  20. Ayustaningwarno, F., M. Dekker, V. Fogliano, and R. Verkerk (2018) Effect of vacuum frying on quality attributes of fruits. Food Eng. Rev. 10: 154–164.

    Article  Google Scholar 

  21. Deng, L.-Z., A. S. Mujumdar, Q. Zhang, X.-H. Yang, J. Wang, Z.-A. Zheng, Z.-J. Gao, and H.-W. Xiao (2019) Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes–a comprehensive review. Crit. Rev. Food Sci. Nutr. 59: 1408–1432.

    Article  CAS  PubMed  Google Scholar 

  22. Dziki, D. (2020) Recent trends in pretreatment of food before freeze-drying. Processes 8: 1661.

    Article  Google Scholar 

  23. Ren, A., S. Pan, W. Li, G. Chen, and X. Duan (2018) Effect of various pretreatments on quality attributes of vacuum-fried shiitake mushroom chips. J. Food Qual. 2018: 4510126.

    Article  Google Scholar 

  24. del Valle, J. M., V. Aránguiz, and H. León (1998) Effects of blanching and calcium infiltration on PPO activity, texture, microstructure and kinetics of osmotic dehydration of apple tissue. Food Res. Int. 31: 557–569.

    Article  Google Scholar 

  25. Rodríguez, Ó., P. J. Llabrés, S. Simal, A. Femenia, and C. Rosselló (2015) Intensification of predrying treatments by means of ultrasonic assistance: effects on water mobility, PPO activity, microstructure, and drying kinetics of apple. Food Bioproc. Tech. 8: 503–515.

    Article  Google Scholar 

  26. Feng, Y., X. Yu, A. E. A. Yagoub, B. Xu, B. Wu, L. Zhang, and C. Zhou (2019) Vacuum pretreatment coupled to ultrasound assisted osmotic dehydration as a novel method for garlic slices dehydration. Ultrason. Sonochem. 50: 363–372.

    Article  CAS  PubMed  Google Scholar 

  27. Oladejo, A. O., H. Ma, W. Qu, C. Zhou, B. Wu, B. B. Uzoejinwa, D. I. Onwude, and X. Yang (2018) Application of pretreatment methods on agricultural products prior to frying: a review. J. Sci. Food Agric. 98: 456–466.

    Article  CAS  PubMed  Google Scholar 

  28. Cichowska, J., J. Żubernik, J. Czyżewski, H. Kowalska, and D. Witrowa-Rajchert (2018) Efficiency of osmotic dehydration of apples in polyols solutions. Molecules 23: 446.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rahaman, A., X.-A. Zeng, A. Kumari, M. Rafiq, A. Siddeeg, M. F. Manzoor, Z. Baloch, and Z. Ahmed (2019) Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrason. Sonochem. 58: 104643.

    Article  CAS  PubMed  Google Scholar 

  30. Dehghannya, J. and L. Abedpour (2018) Influence of a three stage hybrid ultrasound-osmotic-frying process on production of low fat fried potato strips. J. Sci. Food Agric. 98: 1485–1491.

    Article  CAS  PubMed  Google Scholar 

  31. Karizaki, V. M., S. Sahin, G. Sumnu, M. T. H. Mosavian, and A. Luca (2013) Effect of ultrasound-assisted osmotic dehydration as a pretreatment on deep fat frying of potatoes. Food Bioproc. Tech. 6: 3554–3563.

    Article  CAS  Google Scholar 

  32. Krokida, M. K., V. Oreopoulou, Z. B. Maroulis, and D. Marinos-Kouris (2001) Effect of osmotic dedydration pretreatment on quality of french fries. J. Food Eng. 49: 339–345.

    Article  Google Scholar 

  33. Nunes, Y. and R. G. Moreira (2009) Effect of osmotic dehydration and vacuum-frying parameters to produce high-quality mango chips. J. Food Sci. 74: E355–E362.

    Article  CAS  PubMed  Google Scholar 

  34. Oladejo, A. O., H. Ma, W. Qu, C. Zhou, B. Wu, X. Yang, and D. I. Onwude (2017) Effects of ultrasound pretreatments on the kinetics of moisture loss and oil uptake during deep fat frying of sweet potato (Ipomea batatas). Innov. Food Sci. Emerg. Technol. 43: 7–17.

    Article  CAS  Google Scholar 

  35. Su, Y., M. Zhang, B. Chitrakar, and W. Zhang (2021) Reduction of oil uptake with osmotic dehydration and coating pre-treatment in microwave-assisted vacuum fried potato chips. Food Biosci. 39: 100825.

    Article  CAS  Google Scholar 

  36. Tran, T. T. M., X. D. Chen, and C. Southern (2007) Reducing oil content of fried potato crisps considerably using a ‘sweet’ pretreatment technique. J. Food Eng. 80: 719–726.

    Article  CAS  Google Scholar 

  37. Kim, D.-S. and H.-J. Shin (2021) Effect of pretreatment method on the physical properties of vacuum-fried sweet potato chips. Int. J. Adv. Eng. Tech. 14: 107–113.

    Google Scholar 

  38. Kim, T. and R. Moreira (2013) De-oiling and pretreatment for high-quality potato chips. J. Food Process Eng. 36: 267–275.

    Article  Google Scholar 

  39. Moreira, R. G., X. Sun, and Y. Chen (1997) Factors affecting oil uptake in tortilla chips in deep-fat frying. J. Food Eng. 31: 485–498.

    Article  Google Scholar 

  40. Gamble, M. H., P. Rice, and J. D. Selman (1987) Relationship between oil uptake and moisture loss during frying of potato slices from c. v. Record U.K. tubers. Int. J. Food Sci. Technol. 22: 233–241.

    Article  Google Scholar 

  41. Ravli, Y., P. Da Sila, and R. G. Moreira (2013) Two-stage frying process for high-quality sweet-potato chips. J. Food Eng. 118: 31–40.

    Article  CAS  Google Scholar 

  42. Sosa-Morales, M. E., A. P. Solares-Alvarado, S. P. Aguilera-Bocanegra, J. F. Muñoz-Roa, and G. A. Cardoso-Ugarte (2022) Reviewing the effects of vacuum frying on frying medium and fried foods properties. Int. J. Food Sci. Technol. 57: 3278–3291.

    Article  CAS  Google Scholar 

  43. Devi, S., M. Zhang, R. Ju, and B. Bhandari (2021) Recent development of innovative methods for efficient frying technology. Crit. Rev. Food Sci. Nutr. 61: 3709–3724.

    Article  PubMed  Google Scholar 

  44. Selvakumar, R. and R. B. Tiwari (2018) Effect of osmotic treatments on weight reduction, water loss, solid gain, moisture, total solids, yield and drying ratio of carrot (Daucus carota L.) slices. Chem. Sci. Rev. Lett. 7: 959–965.

    Google Scholar 

  45. Krokida, M. K., V. T. Karathanos, and Z. B. Maroulis (2000) Effect of osmotic dehydration on color and sorption characteristics of apple and banana. Dry. Technol. 18: 937–950.

    Article  CAS  Google Scholar 

  46. Serpen, A. and V. Gökmen (2007) Modeling of acrylamide formation and browning ratio in potato chips by artificial neural network. Mol. Nutr. Food Res. 51: 383–389.

    Article  CAS  PubMed  Google Scholar 

  47. Guiné, R. P. F. (2019) The use of artificial neural networks (ANN) in food process engineering. Int. J. Food Eng. 5: 15–21.

    Article  Google Scholar 

  48. Said, F. M., J. Y. Gan, and J. Sulaiman (2020) Correlation between response surface methodology and artificial neural network in the prediction of bioactive compounds of unripe Musa acuminata peel. Eng. Sci. Technol. an Int. J. 23: 781–787.

    Article  Google Scholar 

  49. Zikmund, W. G. (2000) Business Research Methods. 6th ed., p. 513. The Dryden Press.

  50. Henseler, J., C. M. Ringle, and R. R. Sinkovics (2009) The use of partial least squares path modeling in international marketing. pp. 277–319. In: R. R. Sinkovics and P. N. Ghauri (eds.). New Challenges to International Marketing. Emerald Group Publishing Limited.

  51. Bai, X.-L., T.-L. Yue, Y.-H. Yuan, and H.-W. Zhang (2010) Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 33: 3751–3758.

    Article  CAS  PubMed  Google Scholar 

  52. Ciric, A., B. Krajnc, D. Heath, and N. Ogrinc (2020) Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem. Toxicol. 135: 110976.

    Article  CAS  PubMed  Google Scholar 

  53. Aung, T., S.-J. Kim, and J.-B. Eun (2022) A hybrid RSM-ANN-GA approach on optimisation of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract. Food Chem. 366: 130689.

    Article  CAS  PubMed  Google Scholar 

  54. Kashyap, P., C. S. Riar, and N. Jindal (2021) Optimization of ultrasound assisted extraction of polyphenols from Meghalayan cherry fruit (Prunus nepalensis) using response surface methodology (RSM) and artificial neural network (ANN) approach. J. Food Meas. Charact. 15: 119–133.

    Article  Google Scholar 

  55. Kadiri, O., S. O. Gbadamosi, and C. T. Akanbi (2019) Extraction kinetics, modelling and optimization of phenolic antioxidants from sweet potato peel vis-a-vis RSM, ANN-GA and application in functional noodles. J. Food Meas. Charact. 13: 3267–3284.

    Article  Google Scholar 

  56. Aliakbarian, B., F. C. Sampaio, J. T. de Faria, C. G. Pitangui, F. Lovaglio, A. A. Casazza, A. Converti, and P. Perego (2018) Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network. LWT 93: 220–228.

    Article  CAS  Google Scholar 

  57. Kramer, O. (2017) Genetic algorithms. pp. 11–19. In: O. Kramer (ed.). Genetic Algorithm Essentials. Springer.

  58. Oladejo, A. O., H. Ma, W. Qu, C. Zhou, and B. Wu (2017) Effects of ultrasound on mass transfer kinetics, structure, carotenoid and vitamin C content of osmodehydrated sweet potato (Ipomea batatas). Food Bioproc. Tech. 10: 1162–1172.

    Article  CAS  Google Scholar 

  59. Sobukola, O. P., V. Dueik, L. Munoz, and P. Bouchon (2013) Comparison of vacuum and atmospheric deep-fat frying of wheat starch and gluten based snacks. Food Sci. Biotechnol. 22: 177–182.

    Article  CAS  Google Scholar 

  60. Pandiselvam, R., Y. Tak, E. Olum, O. J. Sujayasree, Y. Tekgül, G. Ç. Koç, M. Kaur, P. Nayi, A. Kothakota, and M. Kumar (2022) Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: impact on bioactive components, texture, color, and sensory properties of food. J. Texture Stud. 53: 737–762.

    Article  PubMed  Google Scholar 

  61. Núñez-Mancilla, Y., A. Vega-Gálvez, M. Pérez-Won, L. Zura, P. García-Segovia, and K. D. Scala (2014) Effect of osmotic dehydration under high hydrostatic pressure on microstructure, functional properties and bioactive compounds of strawberry (Fragaria vesca). Food Bioproc. Tech. 7: 516–524.

    Article  Google Scholar 

  62. Wang, R., M. Zhang, and A. S. Mujumdar (2010) Effect of osmotic dehydration on microwave freeze-drying characteristics and quality of potato chips. Dry. Technol. 28: 798–806.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Chosun University (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Jae Shin.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DS., Lee, J.H. & Shin, HJ. Optimization of Vacuum Frying Process for Sweet Potato Chip Manufacturing Using Response Surface Methodology and Artificial Neural Network Model. Biotechnol Bioproc E 28, 554–567 (2023). https://doi.org/10.1007/s12257-023-0061-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0061-0

Keywords

Navigation