Skip to main content

Advertisement

Log in

Ultrasound- and Negative Pressure-assisted Fractional Precipitation of Paclitaxel from Taxus chinensis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effect of ultrasound and negative pressure on the efficiency of fractional precipitation of paclitaxel derived from Taxus chinensis was investigated. Introducing both ultrasound and negative pressure during fractional precipitation resulted in a precipitation time that was 2 times faster than the conventional ultrasound-fractional precipitation and negative pressure-fractional precipitation. In particular, using an ultrasonic power of 250 W and a negative pressure of -200 mmHg simultaneously could recover up to 98.2% of the paclitaxel within 1 min. The ultrasound/negative pressure-fractional precipitation resulted in precipitates with mean particle sizes that were 9.3, 2.3, and 2.7 times smaller than those of the conventional fractional precipitation, the negative pressure-fractional precipitation, and the ultrasound-fractional precipitation, respectively. In addition, the diffusion coefficients increased by 11.4, 2.2, and 2.6 times, and the rate constants increased by 2.9–7.0, 1.3–3.0, and 2.3–5.5 times. As the ultrasonic power and negative pressure increased, the changes of activation energy decreased, promoting faster precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, L. and L. Chen (2019) Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 24: 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kang, H.-J. and J.-H. Kim (2020) Cavitation bubble- and gas bubble-induced fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 99: 316–323.

    Article  CAS  Google Scholar 

  3. Min, H.-S. and J.-H. Kim (2022) Study of the extraction kinetics and calculation of effective diffusivity and mass transfer coefficient in negative pressure cavitation extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 27: 111–118.

    Article  CAS  Google Scholar 

  4. Modarresi-Darreh, B., K. Kamali, S. M. Kalantar, H. Dehghanizadeh, and B. Aflatoonian (2018) Comparison of synthetic and natural Taxol extracted from Taxus plant (Taxus baccata) on growth of ovarian cancer cells under in vitro condition. Eurasian J. Biosci. 12: 413–418.

    CAS  Google Scholar 

  5. Howat, S., B. Park, I. S. Oh, Y. W. Jin, E. K. Lee, and G. J. Loake (2014) Paclitaxel: biosynthesis, production and future prospects. N. Biotechnol. 31: 242–245.

    Article  CAS  PubMed  Google Scholar 

  6. Kang, D.-Y. and J.-H. Kim (2022) Two-component adsorption characteristics of paclitaxel and 10-deacetylpaclitaxel from Taxus chinensis onto Sylopute. Biotechnol. Bioprocess Eng. 27: 145–155.

    Article  CAS  Google Scholar 

  7. Escrich, A., L. Almagro, E. Moyano, R. M. Cusido, M. Bonfill, B. Hosseini, and J. Palazon (2021) Improved biotechnological production of paclitaxel in Taxus media cell cultures by the combined action of coronatine and calix[8]arenes. Plant Physiol. Biochem. 163: 68–75.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, C.-G. and J.-H. Kim (2017) A kinetic and thermodynamic study of fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 59(Pt B): 216–222.

    Article  CAS  Google Scholar 

  9. Min, H.-S. and J.-H. Kim (2021) Kinetic and thermodynamic study of the ultrasonic acetone-pentane fractional precipitation of paclitaxel from the plant cell cultures of Taxus chinensis. Biotechnol. Bioprocess Eng. 26: 660–668.

    Article  CAS  Google Scholar 

  10. Kang, I. S. and J.-H. Kim (2012) Effect of reactor type on the purification efficiency of paclitaxel in the increased surface area fractional precipitation process. Sep. Purif. Technol. 99: 14–19.

    Article  CAS  Google Scholar 

  11. Kim, J.-H., I.-S. Kang, H.-K. Choi, S.-S. Hong, and H.-S. Lee (2000) Fractional precipitation for paclitaxel pre-purification from plant cell cultures of Taxus chinensis. Biotechnol. Lett. 22: 1753–1756.

    Article  CAS  Google Scholar 

  12. Kim, J. H., I. S. Kang, H. K. Choi, S. S. Hong, and H. S. Lee (2002) A novel prepurification for paclitaxel from plant cell cultures. Process Biochem. 37: 679–682.

    Article  CAS  Google Scholar 

  13. Jeon, S. I., S. Mun, and J.-H. Kim (2006) Optimal temperature control in fractional precipitation for paclitaxel pre-purification. Process Biochem. 41: 276–280.

    Article  CAS  Google Scholar 

  14. Lee, J.-Y. and J.-H. Kim (2012) Evaluation of the effect of crude extract purity and pure paclitaxel content on the increased surface area fractional precipitation process for the purification of paclitaxel. Process Biochem. 47: 2388–2397.

    Article  CAS  Google Scholar 

  15. Lee, J.-Y. and J.-H. Kim (2013) Influence of crude extract purity and pure paclitaxel content on fractional precipitation for purification of paclitaxel. Sep. Purif. Technol. 103: 8–14.

    Article  CAS  Google Scholar 

  16. Sim, H. A., J.-Y. Lee, and J.-H. Kim (2012) Evaluation of a high surface area acetone/pentane precipitation process for the purification of paclitaxel from plant cell cultures. Sep. Purif. Technol. 89: 112–116.

    Article  CAS  Google Scholar 

  17. Lee, C.-G. and J.-H. Kim (2014) Improved fractional precipitation method for purification of paclitaxel. Process Biochem. 49: 1370–1376.

    Article  CAS  Google Scholar 

  18. Jordens, J., N. D. Coker, B. Gielen, T. V. Gerven, and L. Braeken (2015) Ultrasound precipitation of manganese carbonate: the effect of power and frequency on particle properties. Ultrason. Sonochem. 26: 64–72.

    Article  CAS  PubMed  Google Scholar 

  19. Min, H.-S. and J.-H. Kim (2022) Negative pressure cavitation fractional precipitation for the purification of paclitaxel from Taxus chinensis. Korean J. Chem. Eng. 39: 58–62.

    Article  CAS  Google Scholar 

  20. Hong, J. and J.-H. Kim (2022) Ultrasonic cavitation bubble- and gas bubble-assisted fractional precipitation for the purification of (+)-dihydromyricetin. Korean J. Chem. Eng. 39: 3067–3073.

    Article  CAS  Google Scholar 

  21. Dalvi, S. V. and R. N. Dave (2010) Analysis of nucleation kinetics of poorly water-soluble drugs in presence of ultrasound and hydroxypropyl methyl cellulose during antisolvent precipitation. Int. J. Pharm. 387: 172–179.

    Article  CAS  PubMed  Google Scholar 

  22. Park, J.-N. and J.-H. Kim (2017) Kinetic and thermodynamic characteristics of fractional precipitation of (+)-dihydromyricetin. Process Biochem. 53: 224–231.

    Article  CAS  Google Scholar 

  23. Dalvi, S. V. and M. D. Yadav (2015) Effect of ultrasound and stabilizers on nucleation kinetics of curcumin during liquid antisolvent precipitation. Ultrason. Sonochem. 24: 114–122.

    Article  CAS  PubMed  Google Scholar 

  24. Seo, H.-W. and J.-H. Kim (2019) Ultrasound-assisted fractional precipitation of paclitaxel from Taxus chinensis cell cultures. Process Biochem. 87: 238–243.

    Article  CAS  Google Scholar 

  25. Khadka, P., J. Ro, H. Kim, I. Kim, J. T. Kim, H. Kim, J. M. Cho, G. Yun, and J. Lee (2014) Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharm. Sci. 9: 304–316.

    Article  Google Scholar 

  26. Ma, D., J. S. Marshall, and J. Wu (2018) Measurement of ultrasound-enhanced diffusion coefficient of nanoparticles in an agarose hydrogel. J. Acoust. Soc. Am. 144: 3496.

    Article  CAS  PubMed  Google Scholar 

  27. Guo, Z., A. G. Jones, and N. Li (2006) The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization. Chem. Eng. Sci. 61: 1617–1626.

    Article  CAS  Google Scholar 

  28. Wolloch, L. and J. Kost (2010) The importance of microjet vs shock wave formation in sonophoresis. J. Control. Release 148: 204–211.

    Article  CAS  PubMed  Google Scholar 

  29. Niladevi, K. N., R. K. Sukumaran, N. Jacob, G. S. Anisha, and P. Prema (2009) Optimization of laccase production from a novel strain-Streptomyces psammoticus using response surface methodology. Microbiol. Res. 164: 105–113.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Number: 2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Ethics declarations

The authors declare no financial or commercial conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, EJ., Kim, JH. Ultrasound- and Negative Pressure-assisted Fractional Precipitation of Paclitaxel from Taxus chinensis. Biotechnol Bioproc E 28, 336–344 (2023). https://doi.org/10.1007/s12257-022-0364-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0364-6

Keywords

Navigation