Skip to main content
Log in

An Overview on Taxol Production Technology and Its Applications as Anticancer Agent

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2022

This article has been updated

Abstract

Cancer is undeniably a major health risk factor that is growing rapidly globally despite promising medicinal and pharmaceutical development. Treatment of cancer remains an issue due to financial constrains in most of the developing countries. The majority of today’s medicines are derived from medicinal plants, as we all know. Taxol is such a plant-based chemotherapeutic agent which has blown the anticancer research field. The extinction of Taxus spp., which is the main natural source of taxol synthesis, required the development of novel alternative approaches in the oncology field. Many novel discoveries have been in trend in which endophytic microbial fermentation process is more focused as this area is cost-efficacious, less time consumable, and eco-friendly. Endophytes are one of another alternative approach for the taxol production, preserving the natural resources of Taxus plants worldwide. Endophytic microorganisms can be exploited in the taxol industry because most of the endophytic microbes have yet to be explored for the eco-friendly and economical production of this wonder drug. The aim of this review article is to cover everything from the discovery of taxol through the development of new natural resource-based biotechnology techniques. Furthermore, the current review has emphasised the use of taxol in fields other than anti-cancer properties, as well as pointing to some future opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Omara, T., A. K. Kiprop, R. C. Ramkat, J. Cherutoi, S. Kagoya, D. Moraa Nyangena, T. Azeze Tebo, P. Nteziyaremye, L. Nyambura Karanja, A. Jepchirchir, A. Maiyo, B. Jematia Kiptui, I. Mbabazi, C. Kiwanuka Nakiguli, B. V. Nakabuye, and M. Chepkemoi Koske (2020) Medicinal plants used in traditional management of cancer in Uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evid. Based Complement. Alternat. Med. 2020: 3529081.

    Article  Google Scholar 

  2. Sung, H., J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71: 209–249.

    Article  Google Scholar 

  3. Mathur, P., K. Sathishkumar, M. Chaturvedi, P. Das, K. L. Sudarshan, S. Santhappan, V. Nallasamy, A. John, S. Narasimhan, F. S. Roselind, and ICMR-NCDIR-NCRP Investigator Group (2020) Cancer statistics, 2020: report from National Cancer Registry Programme, India. JCO Glob. Oncol. 6: 1063–1075.

    Article  Google Scholar 

  4. De Luca, A., M. R. Maiello, A. D’Alessio, D. Frezzetti, M. Gallo, M. Carotenuto, and N. Normanno (2018) Pharmacokinetic drug evaluation of palbociclib for the treatment of breast cancer. Expert Opin. Drug Metab. Toxicol. 14: 891–900.

    Article  CAS  Google Scholar 

  5. De Castro Sant’ Anna, C., A. G. Junior, P. Soares, F. Tuji, E. Paschoal, L. C. Chaves, and R. R. Burbano (2018) Molecular biology as a tool for the treatment of cancer. Clin. Exp. Med. 18: 457–464.

    Article  Google Scholar 

  6. Oun, R., Y. E. Moussa, and N. J. Wheate (2018) The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 47: 6645–6653. (Erratum published 2018, Dalton Trans. 47: 7848)

    Article  CAS  Google Scholar 

  7. Kampan, N. C., M. T. Madondo, O. M. McNally, M. Quinn, and M. Plebanski (2015) Paclitaxel and its evolving role in the management of ovarian cancer. Biomed Res. Int. 2015: 413076.

    Article  Google Scholar 

  8. Wani, M. C., H. L. Taylor, M. E. Wall, P. Coggon, and A. T. McPhail (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 93: 2325–2327.

    Article  CAS  Google Scholar 

  9. Weaver, B. A. (2014) How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell. 25: 2677–2681.

    Article  Google Scholar 

  10. Gallego-Jara, J., G. Lozano-Terol, R. A. Sola-Martínez, M. Cánovas-Díaz, and T. de Diego Puente (2020) A compressive review about Taxol®: history and future challenges. Molecules. 25: 5986.

    Article  CAS  Google Scholar 

  11. Wang, F., M. Porter, A. Konstantopoulos, P. Zhang, and H. Cui (2017) Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J. Control. Release. 267: 100–118.

    Article  CAS  Google Scholar 

  12. El-Sayed, E.-S., A. S. Ahmed, I. A. Hassan, A. A. Ismaiel, and A.-Z. Karam El-Din (2020) Semi-continuous production of the anticancer drug taxol by Aspergillus fumigatus and Alternaria tenuissima immobilized in calcium alginate beads. Bioprocess Biosyst. Eng. 43: 997–1008.

    Article  CAS  Google Scholar 

  13. Das, A., M. I. Rahman, A. S. Ferdous, A. Amin, M. M. Rahman, N. Nahar, M. A. Uddin, M. R. Islam, and H. Khan (2017) An endophytic Basidiomycete, Grammothele lineata, isolated from Corchorus olitorius, produces paclitaxel that shows cytotoxicity. PLoS One. 12: e0178612.

    Article  Google Scholar 

  14. Stierle, A., G. Strobel, and D. Stierle (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science. 260: 214–216.

    Article  CAS  Google Scholar 

  15. Abdel-Razek, A. S., M. E. El-Naggar, A. Allam, O. M. Morsy, and S. I. Othman (2020) Microbial natural products in drug discovery. Processes. 8: 470.

    Article  CAS  Google Scholar 

  16. Tolulope, R. A., A. I. Adeyemi, M. A. Erute, and T. S. Abiodun (2015) Isolation and screening of endophytic fungi from three plants used in traditional medicine in Nigeria for antimicrobial activity. Int. J. Green Pharm. 9: 58–62.

    Article  CAS  Google Scholar 

  17. Gouda, S., G. Das, S. K. Sen, H. S. Shin, and J. K. Patra (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 7: 1538.

    Article  Google Scholar 

  18. Singh, R. and A. K. Dubey (2015) Endophytic actinomycetes as emerging source for therapeutic compounds. Indo Glob. J. Pharm. Sci. 5: 106–116.

    Article  CAS  Google Scholar 

  19. Strobel, G. A., W. M. Hess, E. Ford, R. S. Sidhu, and X. Yang (1996) Taxol from fungal endophytes and the issue of biodiversity. J. Ind. Microbiol. Biotechnol. 17: 417–423.

    Article  CAS  Google Scholar 

  20. Kumaran, R. S., H. J. Kim, and B. K. Hur (2010) Taxolproducing [corrected] fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J. Biosci. Bioeng. 110: 541–546. (Erratum published 2011, J. Biosci. Bioeng. 111: 731)

    Article  CAS  Google Scholar 

  21. Zhao, J., L. Zhou, J. Wang, T. Shan, L. Zhong, X. Liu, and X. Gao (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. pp. 567–576. In: A. Méndez-Vilas (ed.). Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Formatex Research Center, Badajoz, Spain.

    Google Scholar 

  22. Verpoorte, R. (2000) Pharmacognosy in the new millennium: leadfinding and biotechnology. J. Pharm. Pharmacol. 52: 253–262.

    Article  CAS  Google Scholar 

  23. Swain, S. M., S. F. Honig, M. C. Tefft, and L. Walton (1995) A phase II trial of paclitaxel (Taxol®) as first line treatment in advanced breast cancer. Invest. New Drugs. 13: 217–222.

    Article  CAS  Google Scholar 

  24. Chen, K. and W. Shi (2016) Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel. Tumour Biol. 37: 10539–10544.

    Article  CAS  Google Scholar 

  25. Foley, E. A. and T. M. Kapoor (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 14: 25–37.

    Article  CAS  Google Scholar 

  26. Ojeda-Lopez, M. A., D. J. Needleman, C. Song, A. Ginsburg, P. A. Kohl, Y. Li, H. P. Miller, L. Wilson, U. Raviv, M. C. Choi, and C. R. Safinya (2014) Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch. Nat. Mater. 13: 195–203.

    Article  CAS  Google Scholar 

  27. Lou, J., X. Niu, F. Yan, J. Pan, and X. Zhu (2011) Recent progresses in the studies of taxol and taxane-producing fungi. Jun Wu Xue Bao. 30: 158–167.

    CAS  Google Scholar 

  28. Zhu, L. and L. Chen (2019) Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 24: 40.

    Article  CAS  Google Scholar 

  29. Howat, S., B. Park, I. S. Oh, Y. W. Jin, E. K. Lee, and G. J. Loake (2014) Paclitaxel: biosynthesis, production and future prospects. N. Biotechnol. 31: 242–245.

    Article  CAS  Google Scholar 

  30. Zhao, K., L. Yu, Y. Jin, X. Ma, D. Liu, X. Wang, and X. Wang (2016) [Advances and prospects of taxol biosynthesis by endophytic fungi]. Sheng Wu Gong Cheng Xue Bao. 32: 1038–1051.

    CAS  Google Scholar 

  31. Kumar, P., B. Singh, V. Thakur, A. Thakur, N. Thakur, D. Pandey, and D. Chand (2019) Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnol. Rep. (Amst.) 24: e00395.

    Article  Google Scholar 

  32. Flesch, G. and M. Rohmer (1988) Prokaryotic hopanoids: the biosynthesis of the bacteriohopane skeleton. Formation of isoprenic units from two distinct acetate pools and a novel type of carbon/carbon linkage between a triterpene and D-ribose. Eur. J. Biochem. 175: 405–411.

    Article  CAS  Google Scholar 

  33. Rohmer, M., M. Knani, P. Simonin, B. Sutter, and H. Sahm (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295: 517–524.

    Article  CAS  Google Scholar 

  34. Gond, S. K., R. N. Kharwar, and J. F. WhiteJr. (2014) Will fungi be the new source of the blockbuster drug taxol? Fungal Biol. Rev. 28: 77–84.

    Article  Google Scholar 

  35. Yang, C., M. Bian, and Z. Yang (2014) A polymer additive boosts the anti-cancer efficacy of supramolecular nanofibers of taxol. Biomater. Sci. 2: 651–654.

    Article  CAS  Google Scholar 

  36. Nasiri, J., M. R. Naghavi, H. Alizadeh, and M. R. Moghadam (2016) Seasonal-based temporal changes fluctuate expression patterns of TXS, DBAT, BAPT and DBTNBT genes alongside production of associated taxanes in Taxus baccata. Plant Cell Rep. 35: 1103–1119.

    Article  CAS  Google Scholar 

  37. Kashani, K., M. Jalali Javaran, M. S. Sabet, and A. Moieni (2018) Identification of rate-limiting enzymes involved in paclitaxel biosynthesis pathway affected by coronatine and methyl-β-cyclodextrin in Taxus baccata L. cell suspension cultures. Daru. 26: 129–142.

    Article  CAS  Google Scholar 

  38. Jiang, L., K. Zhang, X. Lü, L. Yang, S. Wang, D. Chen, Y. Yang, and D. Qiu (2021) Characterization and expression analysis of genes encoding Taxol biosynthetic enzymes in Taxus spp. J. For. Res. (Harbin) 32: 2507–2515.

    Article  CAS  Google Scholar 

  39. Tong, Y., Y. F. Luo, and W. Gao (2022) Biosynthesis of paclitaxel using synthetic biology. Phytochem. Rev. 21: 863–877.

    Article  CAS  Google Scholar 

  40. Sabzehzari, M., M. Zeinali, and M. R. Naghavi (2020) Alternative sources and metabolic engineering of Taxol: advances and future perspectives. Biotechnol. Adv. 43: 107569.

    Article  CAS  Google Scholar 

  41. Collins, D., R. R. Mill, and M. Möller (2003) Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. Am. J. Bot. 90: 175–182.

    Article  CAS  Google Scholar 

  42. Liu, W. C., T. Gong, and P. Zhu (2016) Advances in exploring alternative Taxol sources. RSC Adv. 6: 48800–48809.

    Article  CAS  Google Scholar 

  43. Zhou, R., D. Zhu, S. Gao, and Z. Cai (1994) [The occurrence of taxol and brevifoliol in Pseudotaxus chienii Cheng]. J. China Pharm. Univ. 25: 259–261.

    CAS  Google Scholar 

  44. Qiao, F., H. Cong, X. Jiang, R. Wang, J. Yin, D. Qian, Z. Wang, and P. Nick (2014) De novo characterization of a Cephalotaxus hainanensis transcriptome and genes related to paclitaxel biosynthesis. PLoS One 9: e106900.

    Article  Google Scholar 

  45. Stahlhut, R., G. Park, R. Petersen, W. Ma, and P. Hylands (1999) The occurrence of the anti-cancer diterpene taxol in Podocarpus gracilior Pilger (Podocarpaceae). Biochem. Syst. Ecol. 27: 613–622.

    Article  CAS  Google Scholar 

  46. Wang, Y. F., Q. W. Shi, M. Dong, H. Kiyota, Y. C. Gu, and B. Cong (2011) Natural taxanes: developments since 1828. Chem. Rev. 111: 7652–7709.

    Article  CAS  Google Scholar 

  47. Lee, E.-K., Y.-W. Jin, J. H. Park, Y. M. Yoo, S. M. Hong, R. Amir, Z. Yan, E. Kwon, A. Elfick, S. Tomlinson, F. Halbritter, T. Waibel, B.-W. Yun, and G. J. Loake (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat. Biotechnol. 28: 1213–1217.

    Article  CAS  Google Scholar 

  48. Ochoa-Villarreal, M., S. Howat, M. O. Jang, I. S. Kim, Y. W. Jin, E. K. Lee, and G. J. Loake (2015) Cambial meristematic cells: a platform for the production of plant natural products. N. Biotechnol. 32: 581–587.

    Article  CAS  Google Scholar 

  49. Holton, R. A., C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, C. Tao, P. Vu, S. Tang, P. Zhang, K. K. Murthi, L. N. Gentile, and J. H. Liu (1994) First total synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 116: 1597–1598.

    Article  CAS  Google Scholar 

  50. Nicolaou, K. C., Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan, and E. J. Sorensen (1994) Total synthesis of taxol. Nature. 367: 630–634.

    Article  CAS  Google Scholar 

  51. Danishefsky, S. J., J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V. Magee, D. K. Jung, R. C. Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, and M. J. Di Grandi (1996) Total synthesis of baccatin III and taxol. J. Am. Chem. Soc. 118: 2843–2859.

    Article  CAS  Google Scholar 

  52. Wender, P. A. and T. P. Mucciaro (1992) A new and practical approach to the synthesis of taxol and taxol analogs: the pinene path. J. Am. Chem. Soc. 114: 5878–5879.

    Article  CAS  Google Scholar 

  53. Kuwajima, I. and H. Kusama (2000) Synthetic studies on taxoids: enantioselective total synthesis of (+)-taxusin and (-)-taxol. Synlett. 2000: 1385–1401.

    Article  Google Scholar 

  54. Mukaiyama, T., I. Shiina, H. Iwadare, H. Sakoh, Y.-I. Tani, M. Hasegawa, and K. Saitoh (1997) Asymmetric total synthesis of Taxol. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 73: 95–100.

    Article  Google Scholar 

  55. Takahashi, T. and H. Iwamoto (1997) Construction of A and C ring intermediates for taxol by using (3+2)-cycloaddition of nitrile oxide. Tetrahedron Lett. 38: 2483–2486.

    Article  CAS  Google Scholar 

  56. Hagiwara, H. and Y. Sunada (2004) Mechanism of taxane neurotoxicity. Breast Cancer. 11: 82–85.

    Article  Google Scholar 

  57. El-Mansy, M. F. and W. A. Donaldson (2021) Recent advances in the synthesis of taxoids: 2015–2020. ARKIVOC 2021: 110–137.

    Article  Google Scholar 

  58. Denis, J. N., A. E. Greene, D. Guenard, F. Gueritte-Voegelein, L. Mangatal, and P. Potier (1988) Highly efficient, practical approach to natural taxol. J. Am. Chem. Soc. 110: 5917–5919.

    Article  CAS  Google Scholar 

  59. Rao, K. V. (1997) Semi-synthesis of paclitaxel from naturally occurring glycosidic precursors. J. Heterocycl. Chem. 34: 675–680.

    Article  CAS  Google Scholar 

  60. Cheng, H. L., R. Y. Zhao, T. J. Chen, W. B. Yu, F. Wang, K. D. Cheng, and P. Zhu (2013) Cloning and characterization of the glycoside hydrolases that remove xylosyl groups from 7-β-xylosyl-10-deacetyltaxol and its analogues. Mol. Cell. Proteomics. 12: 2236–2248.

    Article  CAS  Google Scholar 

  61. Borah, J. C., J. Boruwa, and N. C. Barua (2007) Synthesis of the C-13 side-chain of taxol. Curr. Org. Synth. 4: 175–199.

    Article  CAS  Google Scholar 

  62. Patel, R. N. (1998) Tour de paclitaxel: biocatalysis for semisynthesis. Annu. Rev. Microbiol. 52: 361–395.

    Article  CAS  Google Scholar 

  63. Witherup, K. M., S. A. Look, M. W. Stasko, T. J. Ghiorzi, G. M. Muschik, and G. M. Cragg (1990) Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. J. Nat. Prod. 53: 1249–1255.

    Article  CAS  Google Scholar 

  64. Kanda, Y., H. Nakamura, S. Umemiya, R. K. Puthukanoori, V. R. Murthy Appala, G. K. Gaddamanugu, B. R. Paraselli, and P. S. Baran (2020) Two-phase synthesis of taxol. J. Am. Chem. Soc. 142: 10526–10533.

    Article  CAS  Google Scholar 

  65. Phulara, S. C., V. S. Rajput, B. Mazumdar, and A. Runthala (2020) Metabolic and enzyme engineering for the microbial production of anticancer terpenoids. pp. 237–259. In: N. Masood and S. Shakil Malik (eds.). Essentials of Cancer Genomic, Computational Approaches and Precision Medicine. Springer, Singapore.

    Chapter  Google Scholar 

  66. Hegazy, M.-E., T. A. Mohamed, A. I. ElShamy, A.-E.-H. Mohamed, U. A. Mahalel, E. H. Reda, A. M. Shaheen, W. A. Tawfik, A. A. Shahat, K. A. Shams, N. S. Abdel-Azim, and F. M. Hammouda (2015) Microbial biotransformation as a tool for drug development based on natural products from mevalonic acid pathway: a review. J. Adv. Res. 6: 17–33.

    Article  CAS  Google Scholar 

  67. Ajikumar, P. K., W. H. Xiao, K. E. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer, and G. Stephanopoulos (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 330: 70–74.

    Article  CAS  Google Scholar 

  68. Li, Y., G. Zhang, and B. A. Pfeifer (2015) Current and emerging options for taxol production. Adv. Biochem. Eng. Biotechnol. 148: 405–425.

    CAS  Google Scholar 

  69. Kusari, S., S. Singh, and C. Jayabaskaran (2014) Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol. 32: 304–311.

    Article  CAS  Google Scholar 

  70. Engels, B., P. Dahm, and S. Jennewein (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab. Eng. 10: 201–206.

    Article  CAS  Google Scholar 

  71. Liu, H., Y. Wang, Q. Tang, W. Kong, W. J. Chung, and T. Lu (2014) MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microb. Cell Fact. 13: 135.

    Article  Google Scholar 

  72. Köksal, M., Y. Jin, R. M. Coates, R. Croteau, and D. W. Christianson (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature. 469: 116–120.

    Article  Google Scholar 

  73. Jin, Y., D. C. Williams, R. Croteau, and R. M. Coates (2005) Taxadiene synthase-catalyzed cyclization of 6-fluorogeranylgeranyl diphosphate to 7-fluoroverticillenes. J. Am. Chem. Soc. 127: 7834–7842.

    Article  CAS  Google Scholar 

  74. Soliman, S. and Y. Tang (2015) Natural and engineered production of taxadiene with taxadiene synthase. Biotechnol. Bioeng. 112: 229–235.

    Article  CAS  Google Scholar 

  75. Huang, Q., C. A. Roessner, R. Croteau, and A. I. Scott (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg. Med. Chem. 9: 2237–2242.

    Article  CAS  Google Scholar 

  76. Dejong, J. M., Y. Liu, A. P. Bollon, R. M. Long, S. Jennewein, D. Williams, and R. B. Croteau (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 93: 212–224.

    Article  CAS  Google Scholar 

  77. Hyde, K. D. and K. Soytong (2008) The fungal endophyte dilemma. Fungal Divers. 33: 163–173.

    Google Scholar 

  78. Pillaiyar, T., S. Meenakshisundaram, M. Manickam, and M. Sankaranarayanan (2020) A medicinal chemistry perspective of drug repositioning: recent advances and challenges in drug discovery. Eur. J. Med. Chem. 195: 112275.

    Article  CAS  Google Scholar 

  79. Staniek, A., H. J. Woerdenbag, and O. Kayser (2008) Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery. J. Plant Interact. 3: 75–93.

    Article  CAS  Google Scholar 

  80. Ramos, G. P. and K. A. Papadakis (2019) Mechanisms of disease: inflammatory bowel diseases. Mayo Clin. Proc. 94: 155–165.

    Article  CAS  Google Scholar 

  81. Suresh, G., D. Kokila, T. C. Suresh, S. Kumaran, P. Velmurugan, K. A. Vedhanayakisri, S. Sivakumar, and A. V. Ravi (2020) Mycosynthesis of anticancer drug taxol by Aspergillus oryzae, an endophyte of Tarenna asiatica, characterization, and its activity against a human lung cancer cell line. Biocatal. Agric. Biotechnol. 24: 101525.

    Article  Google Scholar 

  82. Venugopalan, A. and S. Srivastava (2015) Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol. Adv. 33(6 Pt 1): 873–887.

    Article  Google Scholar 

  83. Martinez-Outschoorn, U. E., M. Peiris-Pagés, R. G. Pestell, F. Sotgia, and M. P. Lisanti (2017) Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14: 11–31. (Erratum published 2017, Nat. Rev. Clin. Oncol. 14: 113)

    Article  CAS  Google Scholar 

  84. Suryanarayanan, T. S., N. Thirunavukkarasu, M. B. Govindarajulu, and V. Gopalan (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers. 54: 19–30.

    Article  Google Scholar 

  85. Rodriguez, R. J., J. F. WhiteJr., A. E. Arnold, and R. S. Redman (2009) Fungal endophytes: diversity and functional roles. New Phytol. 182: 314–330.

    Article  CAS  Google Scholar 

  86. De Silva, N. I., S. Brooks, S. Lumyong, and K. D. Hyde (2019) Use of endophytes as biocontrol agents. Fungal Biol. Rev. 33: 133–148.

    Article  Google Scholar 

  87. Kumar, A. and V. K. Singh (2019) Microbial Endophytes: Prospects for Sustainable Agriculture. Woodhead Publishing, Duxford, UK.

    Google Scholar 

  88. Sarsaiya, S., J. Shi, and J. Chen (2019) A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered. 10: 316–334.

    Article  CAS  Google Scholar 

  89. Singh, M., A. Kumar, R. Singh, and K. D. Pandey (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech. 7: 315.

    Article  Google Scholar 

  90. Chen, Y. J., Z. Zhang, Y. Wang, Y. Su, and R. Zhang (2003) Screening endophytic fungus to produce taxol from Taxus yunnanensis. Shengwu Jishu. 13: 10–11.

    Google Scholar 

  91. Liu, K., X. Ding, B. Deng, and W. Chen (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J. Ind. Microbiol. Biotechnol. 36: 1171–1177.

    Article  CAS  Google Scholar 

  92. Zhou, J., D. W. Zhong, Q. W. Wang, X. Y. Miao, and X. D. Xu (2010) Paclitaxel ameliorates fibrosis in hepatic stellate cells via inhibition of TGF-beta/Smad activity. World J. Gastroenterol. 16: 3330–3334.

    Article  CAS  Google Scholar 

  93. Gangadevi, V. and J. Muthumary (2008) Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol. Balc. 5: 1–4.

    Google Scholar 

  94. Kathiravan, G. and V. Sri Raman (2010) In vitro TAXOL production, by Pestalotiopsis breviseta—a first report. Fitoterapia 81: 557–564.

    Article  CAS  Google Scholar 

  95. Heinig, U., S. Scholz, and S. Jennewein (2013) Getting to the bottom of Taxol biosynthesis by fungi. Fungal Divers. 60: 161–170.

    Article  Google Scholar 

  96. Garyali, S., A. Kumar, and M. S. Reddy (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J. Microbiol. Biotechnol. 23: 1372–1380.

    Article  CAS  Google Scholar 

  97. Somjaipeng, S., A. Medina, and N. Magan (2016) Environmental stress and elicitors enhance taxol production by endophytic strains of Paraconiothyrium variabile and Epicoccum nigrum. Enzyme Microb. Technol. 90: 69–75.

    Article  CAS  Google Scholar 

  98. Qiao, W., F. Ling, L. Yu, Y. Huang, and T. Wang (2017) Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax-6, isolated from Taxus chinensis var. mairei. Fungal Biol. 121: 1037–1044.

    Article  CAS  Google Scholar 

  99. Newman, D. J. and G. M. Cragg (2020) Plant endophytes and epiphytes: burgeoning sources of known and “unknown” cytotoxic and antibiotic agents? Planta Med. 86: 891–905.

    Article  CAS  Google Scholar 

  100. El-Sayed, E.-S., A. G. Zaki, A. S. Ahmed, and A. A. Ismaiel (2020) Production of the anticancer drug taxol by the endophytic fungus Epicoccum nigrum TXB502: enhanced production by gamma irradiation mutagenesis and immobilization technique. Appl. Microbiol. Biotechnol. 104: 6991–7003.

    Article  CAS  Google Scholar 

  101. Abdel-Fatah, S. S., A. I. El-Batal, G. M. El-Sherbiny, M. A. Khalaf, and A. S. El-Sayed (2021) Production, bioprocess optimization and γ-irradiation of Penicillium polonicum, as a new Taxol producing endophyte from Ginko biloba. Biotechnol. Rep. (Amst.) 30: e00623.

    Article  CAS  Google Scholar 

  102. Barrios-González, J., F. J. Fernández, A. Tomasini, and A. Mejía (2005) Secondary metabolites production by solid-state fermentation. Malays. J. Microbiol. 1: 1–6.

    Google Scholar 

  103. Mitchell, D. A., N. Krieger, D. M. Stuart, and A. Pandey (2000) New developments in solid-state fermentation: II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem. 35: 1211–1225.

    Article  CAS  Google Scholar 

  104. Di Luccio, M., F. Capra, N. P. Ribeiro, G. D. Vargas, D. M. Freire, and D. de Oliveira (2004) Effect of temperature, moisture, and carbon supplementation on lipase production by solid-state fermentation of soy cake by Penicillium simplicissimum. Appl. Biochem. Biotechnol. 113: 173–180.

    Article  Google Scholar 

  105. Thomas, P. and K. M. Reddy (2013) Microscopic elucidation of abundant endophytic bacteria colonizing the cell wall-plasma membrane peri-space in the shoot-tip tissue of banana. AoB Plants. 5: plt011.

    Article  Google Scholar 

  106. Schulz, B., C. Boyle, S. Draeger, A.-K. Römmert, and K. Krohn (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 106: 996–1004.

    Article  CAS  Google Scholar 

  107. Zhao, J., L. C. Davis, and R. Verpoorte (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23: 283–333.

    Article  CAS  Google Scholar 

  108. Li, J.-Y., R. S. Sidhu, A. Bollon, and G. A. Strobel (1998) Stimulation of taxol production in liquid cultures of Pestalotiopsis microspora. Mycol. Res. 102: 461–464.

    Article  CAS  Google Scholar 

  109. Subban, K., R. Subramani, V. P. Srinivasan, M. Johnpaul, and J. Chelliah (2019) Salicylic acid as an effective elicitor for improved taxol production in endophytic fungus Pestalotiopsis microspora. PLoS One. 14: e0212736.

    Article  CAS  Google Scholar 

  110. Amini, S. A., L. Shabani, L. Afghani, Z. Jalalpour, and M. Sharifi-Tehrani (2014) Squalestatin-induced production of taxol and baccatin in cell suspension culture of yew (Taxus baccata L.). Turk. J. Biol. 38: 528–536.

    Article  CAS  Google Scholar 

  111. Choi, Y. H. and R. Verpoorte (2019) Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Curr. Opin. Food Sci. 26: 87–93.

    Article  Google Scholar 

  112. Dai, W. and W. Tao (2008) Preliminary study on fermentation conditions of taxol-producing endophytic fungus. Huagong Jinzhan. 27: 883–886.

    CAS  Google Scholar 

  113. Kumaran, R. S. and B. K. Hur (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol. Appl. Biochem. 54: 21–30.

    Article  CAS  Google Scholar 

  114. Wang, Y. and K. Tang (2011) A new endophytic taxol- and baccatin III-producing fungus isolated from Taxus chinensis var. mairei. Afr. J. Biotechnol. 10: 16379–16386.

    CAS  Google Scholar 

  115. Xu, F., W. Tao, L. Cheng, and L. Guo (2006) Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem. Eng. J. 31: 67–73.

    Article  CAS  Google Scholar 

  116. Zhao, K., L. Sun, X. Wang, X. Li, X. Wang, and D. Zhou (2011) [Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by suppression subtracted hybridization for differentially expressed genes]. Wei Sheng Wu Xue Bao 51: 923–933.

    CAS  Google Scholar 

  117. Subramanian, M. and M. Marudhamuthu (2020) Hitherto unknown terpene synthase organization in taxol-producing endophytic bacteria isolated from marine macroalgae. Curr. Microbiol. 77: 918–923.

    Article  CAS  Google Scholar 

  118. Guchelaar, H. J., C. H. Ten Napel, E. G. de Vries, and N. H. Mulder (1994) Clinical, toxicological and pharmaceutical aspects of the antineoplastic drug taxol: a review. Clin. Oncol. (R. Coll. Radiol.) 6: 40–48.

    Article  CAS  Google Scholar 

  119. Barbuti, A. M. and Z. S. Chen (2015) Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers (Basel) 7: 2360–2371.

    Article  CAS  Google Scholar 

  120. Rowinsky, E. K., L. A. Cazenave, and R. C. Donehower (1990) Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82: 1247–1259.

    Article  CAS  Google Scholar 

  121. Schiff, P. B., J. Fant, and S. B. Horwitz (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667.

    Article  CAS  Google Scholar 

  122. Jordan, M. A., R. J. Toso, D. Thrower, and L. Wilson (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc. Natl. Acad. Sci. U. S. A. 90: 9552–9556.

    Article  CAS  Google Scholar 

  123. Burkhart, C. A., J. W. Berman, C. S. Swindell, and S. B. Horwitz (1994) Relationship between the structure of taxol and other taxanes on induction of tumor necrosis factor-alpha gene expression and cytotoxicity. Cancer Res. 54: 5779–5782.

    CAS  Google Scholar 

  124. Alves, R. C., R. P. Fernandes, J. O. Eloy, H. R. Salgado, and M. Chorilli (2018) Characteristics, properties and analytical methods of paclitaxel: a review. Crit. Rev. Anal. Chem. 48: 110–118.

    Article  CAS  Google Scholar 

  125. Barker, H. E., R. Patel, M. McLaughlin, U. Schick, S. Zaidi, C. M. Nutting, K. L. Newbold, S. Bhide, and K. J. Harrington (2016) CHK1 inhibition radiosensitizes head and neck cancers to paclitaxel-based chemoradiotherapy. Mol. Cancer Ther. 15: 2042–2054.

    Article  CAS  Google Scholar 

  126. Orth, M., K. Unger, U. Schoetz, C. Belka, and K. Lauber (2018) Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2. Oncogene. 37: 52–62.

    Article  CAS  Google Scholar 

  127. Scribano, C. M., J. Wan, K. Esbona, J. B. Tucker, A. Lasek, A. S. Zhou, L. M. Zasadil, R. Molini, J. Fitzgerald, A. M. Lager, J. J. Laffin, K. Correia-Staudt, K. B. Wisinski, A. J. Tevaarwerk, R. O’Regan, S. M. McGregor, A. M. Fowler, R. J. Chappell, T. S. Bugni, M. E. Burkard, and B. A. Weaver (2021) Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel. Sci. Transl. Med. 13: eabd4811.

    Article  CAS  Google Scholar 

  128. Asghari, F., N. Haghnavaz, D. Shanehbandi, V. Khaze, B. Baradaran, and T. Kazemi (2018) Differential altered expression of let-7a and miR-205 tumor-suppressor miRNAs in different subtypes of breast cancer under treatment with Taxol. Adv. Clin. Exp. Med. 27: 941–945.

    Article  Google Scholar 

  129. Yang, D., L. Yu, and S. Van (2010) Clinically relevant anticancer polymer Paclitaxel therapeutics. Cancers (Basel) 3: 17–42.

    Article  Google Scholar 

  130. Tian, J., C. Yan, K. Liu, J. Tao, Z. Guo, J. Liu, Y. Zhang, F. Xiong, and N. Gu (2017) Paclitaxel-loaded magnetic nanoparticles: synthesis, characterization, and application in targeting. J. Pharm. Sci. 106: 2115–2122.

    Article  CAS  Google Scholar 

  131. Ma, Z., H. Wan, W. Wang, X. Zhang, T. Uno, Q. Yang, J. Yue, H. Gao, Y. Zhong, Y. Tian, Q. Sun, Y. Liang, and H. Dai (2019) A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res. 12: 273–279.

    Article  Google Scholar 

  132. Dong, L., X. Zhang, L. Cai, F. Zuo, M. Zhao, Q. Wang, S. Zhang, K. Xu, and J. Li (2020) Targeted MRI and chemotherapy of ovarian cancer with clinic available nano-drug based nanoprobe. Biomed. Pharmacother. 130: 110585.

    Article  CAS  Google Scholar 

  133. Torre, L. A., F. Bray, R. L. Siegel, J. Ferlay, J. Lortet-Tieulent, and A. Jemal (2015) Global cancer statistics, 2012. CA Cancer J. Clin. 65: 87–108.

    Article  Google Scholar 

  134. Emami, J., M. Rezazadeh, F. Hasanzadeh, H. Sadeghi, A. Mostafavi, M. Minaiyan, M. Rostami, and N. Davies (2015) Development and in vitro/in vivo evaluation of a novel targeted polymeric micelle for delivery of paclitaxel. Int. J. Biol. Macromol. 80: 29–40.

    Article  CAS  Google Scholar 

  135. Amith, S. R., J. M. Wilkinson, S. Baksh, and L. Fliegel (2015) The Na+/H+ exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triple-negative breast cancer cells. Oncotarget. 6: 1262–1275.

    Article  Google Scholar 

  136. Eloy, J. O., R. Petrilli, J. F. Topan, H. M. Antonio, J. P. Barcellos, D. L. Chesca, L. N. Serafini, D. G. Tiezzi, R. J. Lee, and J. M. Marchetti (2016) Co-loaded paclitaxel/rapamycin liposomes: development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids Surf. B Biointerfaces. 141: 74–82.

    Article  CAS  Google Scholar 

  137. Wang, N., Z. Wang, S. Nie, L. Song, T. He, S. Yang, X. Yang, C. Yi, Q. Wu, and C. Gong (2017) Biodegradable polymeric micelles coencapsulating paclitaxel and honokiol: a strategy for breast cancer therapy in vitro and in vivo. Int. J. Nanomedicine. 12: 1499–1514.

    Article  CAS  Google Scholar 

  138. Huang, J., Q. Luo, Y. Xiao, H. Li, L. Kong, and G. Ren (2017) The implication from RAS/RAF/ERK signaling pathway increased activation in epirubicin treated triple negative breast cancer. Oncotarget. 8: 108249–108260.

    Article  Google Scholar 

  139. Yang, L., Y. Tian, W. S. Leong, H. Song, W. Yang, M. Wang, X. Wang, J. Kong, B. Shan, and Z. Song (2018) Efficient and tumor-specific knockdown of MTDH gene attenuates paclitaxel resistance of breast cancer cells both in vivo and in vitro. Breast Cancer Res. 20: 113.

    Article  Google Scholar 

  140. Melzer, C., V. Rehn, Y. Yang, H. Bähre, J. von der Ohe, and R. Hass (2019) Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel) 11: 798.

    Article  CAS  Google Scholar 

  141. Chen, H., S. Huang, H. Wang, X. Chen, H. Zhang, Y. Xu, W. Fan, Y. Pan, Q. Wen, Z. Lin, X. Wang, Y. Gu, B. Ding, J. Chen, and X. Wu (2021) Preparation and characterization of paclitaxel palmitate albumin nanoparticles with high loading efficacy: an in vitro and in vivo anti-tumor study in mouse models. Drug Deliv. 28: 1067–1079.

    Article  CAS  Google Scholar 

  142. Yuan, H., H. Guo, X. Luan, M. He, F. Li, J. Burnett, N. Truchan, and D. Sun (2020) Albumin nanoparticle of paclitaxel (abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Mol. Pharm. 17: 2275–2286.

    Article  CAS  Google Scholar 

  143. Xiong, K., Y. Zhang, Q. Wen, J. Luo, Y. Lu, Z. Wu, B. Wang, Y. Chen, L. Zhao, and S. Fu (2020) Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int. J. Pharm. 589: 119875.

    Article  CAS  Google Scholar 

  144. Zhao, J., J. Du, J. Wang, N. An, K. Zhou, X. Hu, Z. Dong, and Y. Liu (2021) Folic acid and poly(ethylene glycol) decorated paclitaxel nanocrystals exhibit enhanced stability and breast cancer-targeting capability. ACS Appl. Mater. Interfaces. 13: 14577–14586.

    Article  CAS  Google Scholar 

  145. Sang, X., N. Belmessabih, R. Wang, P. Stephen, and S. X. Lin (2022) CRIF1-CDK2 interface inhibitors enhance taxol inhibition of the lethal triple-negative breast cancer. Cancers (Basel) 14: 989.

    Article  CAS  Google Scholar 

  146. Wang, W., M. Xi, X. Duan, Y. Wang, and F. Kong (2015) Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Int. J. Nanomedicine. 10: 3737–3750.

    CAS  Google Scholar 

  147. Jiang, K., M. Shen, and W. Xu (2018) Arginine, glycine, aspartic acid peptide-modified paclitaxel and curcumin co-loaded liposome for the treatment of lung cancer: in vitro/vivo evaluation. Int. J. Nanomedicine. 13: 2561–2569.

    Article  CAS  Google Scholar 

  148. Liu, J., H. Cheng, L. Han, Z. Qiang, X. Zhang, W. Gao, K. Zhao, and Y. Song (2018) Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid-polymer hybrid nanoparticles. Drug Des. Devel. Ther. 12: 3199–3209.

    Article  CAS  Google Scholar 

  149. Garofalo, M., H. Saari, P. Somersalo, D. Crescenti, L. Kuryk, L. Aksela, C. Capasso, M. Madetoja, K. Koskinen, T. Oksanen, A. Mäkitie, M. Jalasvuori, V. Cerullo, P. Ciana, and M. Yliperttula (2018) Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J. Control. Release. 283: 223–234.

    Article  CAS  Google Scholar 

  150. O’Flaherty, L., S. D. Shnyder, P. A. Cooper, S. J. Cross, J. G. Wakefield, O. E. Pardo, M. J. Seckl, and J. M. Tavaré (2019) Tumor growth suppression using a combination of taxol-based therapy and GSK3 inhibition in non-small cell lung cancer. PLoS One. 14: e0214610.

    Article  Google Scholar 

  151. Zhao, Y., C. Cai, M. Liu, Y. Zhao, Y. Wu, Z. Fan, Z. Ding, H. Zhang, Z. Wang, and J. Han (2020) Drug-binding albumins forming stabilized nanoparticles for co-delivery of paclitaxel and resveratrol: in vitro/in vivo evaluation and binding properties investigation. Int. J. Biol. Macromol. 153: 873–882.

    Article  CAS  Google Scholar 

  152. Lo, Y. L., X. S. Huang, H. Y. Chen, Y. C. Huang, Z. X. Liao, and L. F. Wang (2021) ROP and ATRP fabricated redox sensitive micelles based on PCL-SS-PMAA diblock copolymers to co-deliver PTX and CDDP for lung cancer therapy. Colloids Surf. B Biointerfaces. 198: 111443.

    Article  CAS  Google Scholar 

  153. Jiménez-López, J., I. Bravo-Caparrós, L. Cabeza, F. R. Nieto, R. Ortiz, G. Perazzoli, E. Fernández-Segura, F. J. Cañizares, J. M. Baeyens, C. Melguizo, and J. Prados (2021) Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomed. Pharmacother. 133: 111059.

    Article  Google Scholar 

  154. Zhang, W., Y. Chen, B. Wang, X. Feng, L. Zhang, and S. Liu (2022) Facile preparation of paclitaxel nano-suspensions to treat lung cancer. J. Biomater. Tissue Eng. 12: 690–694.

    Article  Google Scholar 

  155. Luiz, M. T., J. P. Abriata, G. L. Raspantini, L. B. Tofani, F. Fumagalli, S. M. de Melo, F. da Silva Emery, K. Swiech, P. D. Marcato, R. Lee, and J. M. Marchetti (2019) In vitro evaluation of folate-modified PLGA nanoparticles containing paclitaxel for ovarian cancer therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 105: 110038.

    Article  CAS  Google Scholar 

  156. Li, H., Y. Qian, X. Wang, R. Pi, X. Zhao, and X. Wei (2020) Targeted activation of Stat3 in combination with paclitaxel results in increased apoptosis in epithelial ovarian cancer cells and a reduced tumour burden. Cell Prolif. 53: e12719.

    Google Scholar 

  157. Xiaomeng, F., L. Lei, A. Jinghong, J. Juan, Y. Qi, and Y. Dandan (2020) Treatment with β-elemene combined with paclitaxel inhibits growth, migration, and invasion and induces apoptosis of ovarian cancer cells by activation of STAT-NF-κB pathway. Braz. J. Med. Biol. Res. 53: e8885.

    Article  Google Scholar 

  158. Faria, R. S., L. I. de Lima, R. S. Bonadio, J. P. Longo, M. C. Roque, J. N. de Matos Neto, S. E. Moya, M. C. de Oliveira, and R. B. Azevedo (2021) Liposomal paclitaxel induces apoptosis, cell death, inhibition of migration capacity and antitumoral activity in ovarian cancer. Biomed. Pharmacother. 142: 112000.

    Article  CAS  Google Scholar 

  159. Wu, M., Y. Wang, Y. Wang, M. Zhang, Y. Luo, J. Tang, Z. Wang, D. Wang, L. Hao, and Z. Wang (2017) Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int. J. Nanomedicine. 12: 5313–5330.

    Article  CAS  Google Scholar 

  160. Erdogan, S., O. Doganlar, Z. B. Doganlar, and K. Turkekul (2018) Naringin sensitizes human prostate cancer cells to paclitaxel therapy. Prostate Int. 6: 126–135.

    Article  Google Scholar 

  161. Yang, J., Z. Ju, and S. Dong (2017) Cisplatin and paclitaxel co-delivered by folate-decorated lipid carriers for the treatment of head and neck cancer. Drug Deliv. 24: 792–799.

    Article  CAS  Google Scholar 

  162. Yan, E., J. Jiang, X. Ren, J. Gao, X. Zhang, S. Li, S. Chen, and Y. Li (2021) Polycaprolactone/polyvinyl alcohol core-shell nanofibers as a pH-responsive drug carrier for the potential application in chemotherapy against colon cancer. Mater. Lett. 291: 129516.

    Article  CAS  Google Scholar 

  163. Zhang, D., Y. Li, Y. Liu, X. Xiang, and Z. Dong (2013) Paclitaxel ameliorates lipopolysaccharide-induced kidney injury by binding myeloid differentiation protein-2 to block Toll-like receptor 4-mediated nuclear factor-κB activation and cytokine production. J. Pharmacol. Exp. Ther. 345: 69–75.

    Article  CAS  Google Scholar 

  164. Avramis, I. A., R. Kwock, and V. I. Avramis (2001) Taxotere and vincristine inhibit the secretion of the angiogenesis inducing vascular endothelial growth factor (VEGF) by wild-type and drug-resistant human leukemia T-cell lines. Anticancer Res. 21(4A): 2281–2286.

    CAS  Google Scholar 

  165. Escuin, D., E. R. Kline, and P. Giannakakou (2005) Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-1alpha accumulation and activity by disrupting microtubule function. Cancer Res. 65: 9021–9028.

    Article  CAS  Google Scholar 

  166. Xu, J., Z. Feng, S. Chen, J. Zhu, X. Wu, X. Chen, and J. Li (2019) Taxol alleviates collagen-induced arthritis in mice by inhibiting the formation of microvessels. Clin. Rheumatol. 38: 19–27.

    Article  Google Scholar 

  167. Li, X. and S. Zhang (2020) Herbal compounds for rheumatoid arthritis: literatures review and cheminformatics prediction. Phytother. Res. 34: 51–66.

    Article  Google Scholar 

  168. Sheng, Z., J. Zeng, W. Huang, L. Li, B. Li, C. Lv, and F. Yan (2022) Comparison of therapeutic efficacy and mechanism of paclitaxel alone or in combination with methotrexate in a collagen-induced arthritis rat model. Z. Rheumatol. 81: 164–173.

    Article  CAS  Google Scholar 

  169. Fan, C., X. Li, Y. Zhao, Z. Xiao, W. Xue, J. Sun, X. Li, Y. Zhuang, Y. Chen, and J. Dai (2018) Cetuximab and Taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater. Sci. 6: 1723–1734.

    Article  CAS  Google Scholar 

  170. Nazemi, Z., M. S. Nourbakhsh, S. Kiani, Y. Heydari, M. K. Ashtiani, H. Daemi, and H. Baharvand (2020) Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. J. Control. Release. 321: 145–158.

    Article  CAS  Google Scholar 

  171. Mori, M., M. Dictor, N. Brodszki, J. C. López-Gutiérrez, M. Beato, J. S. Erjefält, and E. A. Eklund (2016) Pulmonary and pleural lymphatic endothelial cells from pediatric, but not adult, patients with Gorham-Stout disease and generalized lymphatic anomaly, show a high proliferation rate. Orphanet J. Rare Dis. 11: 67.

    Article  Google Scholar 

  172. Rössler, J., U. Saueressig, G. Kayser, M. von Winterfeld, and G. L. Klement (2015) Personalized therapy for generalized lymphatic anomaly/Gorham-Stout disease with a combination of sunitinib and taxol. J. Pediatr. Hematol. Oncol. 37: e481–e485.

    Article  Google Scholar 

  173. Roberts, R. L., J. Nath, M. M. Friedman, and J. I. Gallin (1982) Effects of taxol on human neutrophils. J. Immunol. 129: 2134–2141.

    Article  CAS  Google Scholar 

  174. Wang, Y. M., R. Ji, W. W. Chen, S. W. Huang, Y. J. Zheng, Z. T. Yang, H. P. Qu, H. Chen, E. Q. Mao, Y. Chen, and E. Z. Chen (2019) Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway. Drug Des. Devel. Ther. 13: 3391–3404.

    Article  CAS  Google Scholar 

  175. Zhang, W., Y. Shi, Y. Chen, S. Yu, J. Hao, J. Luo, X. Sha, and X. Fang (2010) Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 mixed micelles against non-small cell lung cancer based on passive tumor targeting and modulation of drug resistance. Eur. J. Pharm. Biopharm. 75: 341–353.

    Article  CAS  Google Scholar 

  176. Sharawy, M. H., N. Abdel-Rahman, N. Megahed, and M. S. El-Awady (2018) Paclitaxel alleviates liver fibrosis induced by bile duct ligation in rats: role of TGF-β1, IL-10 and c-Myc. Life Sci. 211: 245–251.

    Article  CAS  Google Scholar 

  177. Ning, L., C. You, Y. Zhang, X. Li, and F. Wang (2020) Synthesis and biological evaluation of surface-modified nanocellulose hydrogel loaded with paclitaxel. Life Sci. 241: 117137.

    Article  CAS  Google Scholar 

  178. Gonçalves, S. and A. Romano (2018) Production of plant secondary metabolites by using biotechnological tools. pp. 81–9. In: R. Vijayakumar and S. S. Raja (eds.). Secondary Metabolites — Sources and Applications. IntechOpen, London, UK.

    Google Scholar 

  179. Phyton Biotech, Specialty fermentation solutions for naturally derived compounds. https://phytonbiotech.com/.

  180. Benvenuto, M. A. (2019) Pharma/drugs. pp. 59–66. Industrial Biotechnology. De Gruyter, Berlin, Germany.

    Chapter  Google Scholar 

  181. Research and Markets, Paclitaxel injection market: by indication — global industry perspective comprehensive analysis and forecast, 2019–2025. https://www.researchandmarkets.com/reports/5144087/paclitaxel-injection-market-by-indication.

  182. Somjaipeng, S., A. Medina, H. Kwaśna, J. O. Ortiz, and N. Magan (2015) Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol. 119: 1022–1031.

    Article  CAS  Google Scholar 

  183. Kasaei, A., M. Mobini-Dehkordi, F. Mahjoubi, and B. Saffar (2017) Isolation of taxol-producing endophytic fungi from Iranian yew through novel molecular approach and their effects on human breast cancer cell line. Curr. Microbiol. 74: 702–709.

    Article  CAS  Google Scholar 

  184. El-Sayed, A. S., S. Safan, N. Z. Mohamed, L. Shaban, G. S. Ali, and M. Z. Sitohy (2018) Induction of Taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem. 71: 31–40.

    Article  CAS  Google Scholar 

  185. Gill, H. and M. Vasundhara (2019) Isolation of taxol producing endophytic fungus Alternaria brassicicola from non-Taxus medicinal plant Terminalia arjuna. World J. Microbiol. Biotechnol. 35: 74.

    Article  Google Scholar 

  186. Khan, R. I., H. Mukhtar, U. F. Gohar, and S. F. Tahir (2020) Random mutagenesis of endophytic fungi for enhanced taxol production: enhancement of taxol production by random mutagenesis. Proc. Pak. Acad. Sci. B Life Environ. Sci. 57: 67–74.

    Google Scholar 

  187. Najafabadi, B. A., N. Qavami, M. A. Ebrahimi, P. Ebrahimi, and N. Zarinpanjeh (2020) Enhancement of Taxol production by applying amino acid complex along with chitosan in suspension culture of Taxus baccata L. J. Med. Plants 19: 99–109.

    Article  Google Scholar 

  188. Chowdhary, K. and S. Sharma (2017) Potential of fungal endophytes in plant growth and disease management. pp. 275–290. In: D. Singh, H. Singh, and R. Prabha (eds.). Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore.

    Chapter  Google Scholar 

  189. Qiao, W., T. Tang, and F. Ling (2020) Comparative transcriptome analysis of a taxol-producing endophytic fungus, Aspergillus aculeatinus Tax-6, and its mutant strain. Sci. Rep. 10: 10558.

    Article  CAS  Google Scholar 

  190. El-Sayed, A. S., D. M. Ali, M. A. Yassin, R. A. Zayed, and G. S. Ali (2019) Sterol inhibitor “Fluconazole” enhance the Taxol yield and molecular expression of its encoding genes cluster from Aspergillus flavipes. Process Biochem. 76: 55–67.

    Article  CAS  Google Scholar 

  191. Ismaiel, A. A., A. S. Ahmed, I. A. Hassan, E.-S. El-Sayed, and A.-Z. Karam El-Din (2017) Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima. Appl. Microbiol. Biotechnol. 101: 5831–5846.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. P. K. Khosla, Hon’ble Chancellor, Shoolini University of Biotechnology and Management Sciences, Solan and Foundation for Life Sciences and Business Management (FLSBM), Solan (H.P.)-India for providing financial support and necessary facilities.

Author information

Authors and Affiliations

Authors

Contributions

Aparajita Sharma: Conceptualization, Data curation, Formal analysis, Writing-original draft, Writing-Review & editing, Validation; Shashi Kant Bhatia: Data curation, Formal analysis, Writing-Review & editing, Validation; Aditya Banyal: Data curation, Formal analysis, Validation; Ishita Chanana: Data curation, Formal analysis; Anil Kumar: Formal analysis, Data curation, Formal analysis, Validation; Duni Chand: Formal analysis, Data curation, Formal analysis; Saurabh Kulshrestha: Data curation, Formal analysis; Pradeep Kumar: Conceptualization, Data curation, Formal analysis, Writing-original draft, Writing-Review & editing, Validation.

Corresponding author

Correspondence to Pradeep Kumar.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Bhatia, S.K., Banyal, A. et al. An Overview on Taxol Production Technology and Its Applications as Anticancer Agent. Biotechnol Bioproc E 27, 706–728 (2022). https://doi.org/10.1007/s12257-022-0063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0063-3

Keywords

Navigation