Skip to main content
Log in

Study of the Extraction Kinetics and Calculation of Effective Diffusivity and Mass Transfer Coefficient in Negative Pressure Cavitation Extraction of Paclitaxel from Taxus chinensis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, the recovery efficiency of paclitaxel from Taxus chinensis was remarkably improved through negative pressure cavitation extraction. Most of the paclitaxel could be recovered from the biomass at a negative pressure of −260 mmHg with a one-time extraction in a short operating time (10–20 min). The pseudo-second-order model was suitable for the kinetic analysis, and the diffusion of paclitaxel in the biomass played a dominant role in the overall extraction rate according to the intraparticle diffusion model. As the negative pressure increased (0, −160, and −260 mmHg), the extraction rate constant (4.3325–5.9126 mL/mg·min), the effective diffusion coefficient (1.083 × 10−12 − 1.377 × 10−12 m2/s), and the mass transfer coefficient (1.428 × 10−7 − 2.371 × 10−7 m/s) increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, L. and L. Chen (2019) Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 24: 40.

    Article  Google Scholar 

  2. Ha, G. S. and J. H. Kim (2016) Kinetic and thermodynamic characteristics of ultrasound-assisted extraction for recovery of paclitaxel from biomass. Process Biochem. 51: 1664–1673.

    Article  CAS  Google Scholar 

  3. Kim, J. H. (2006) Paclitaxel: recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1–10.

    Google Scholar 

  4. Jang, W. S. and J. H. Kim (2019) Characteristics and mechanism of microwave-assisted drying of amorphous paclitaxel for removal of residual solvent. Biotechnol. Bioprocess Eng. 24: 529–535.

    Article  CAS  Google Scholar 

  5. Ghorbani, M., F. Pourjafar, M. Saffari, and Y. Asgari (2020) Paclitaxel resistance resulted in a stem-like state in triple-negative breast cancer: A systems biology approach. Meta Gene. 26: 100800.

    Article  Google Scholar 

  6. Sun, T., Y. Liu, M. Li, H. Yu, and H. Piao (2020) Administration with hyperoside sensitizes breast cancer cells to paclitaxel by blocking the TLR4 signaling. Mol. Cell. Probes. 53: 101602.

    Article  CAS  Google Scholar 

  7. Modarresi-Darreh, B., K. Kamali, S. M. Kalantar, H. Dehghanizadeh, and B. Aflatoonian (2018) Comparison of synthetic and natural Taxol extracted from Taxus plant (Taxus baccata) on growth of ovarian cancer cells under in vitro condition. Eurasia J. Biosci. 12: 413–418.

    CAS  Google Scholar 

  8. Pyo, S. H., H. J. Choi, and B. H. Han (2006) Large-scale purification of 13-dehydroxybaccatin III and 10-deacetylpaclitaxel, semi-synthetic precursors of paclitaxel, from cell cultures of Taxus chinensis. J. Chromatogr. A. 1123: 15–21.

    Article  CAS  Google Scholar 

  9. Kang, H. J. and J. H. Kim (2020) Cavitation bubble- and gas bubble-induced fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 99: 316–323.

    Article  CAS  Google Scholar 

  10. Seo, H. W. and J. H. Kim (2019) Ultrasound-assisted fractional precipitation of paclitaxel from Taxus chinensis cell cultures. Process Biochem. 87: 238–243.

    Article  CAS  Google Scholar 

  11. Kim, J. H., C. B. Lim, I. S. Kang, S. S. Hong, and H. S. Lee (2000) The use of a decanter for harvesting biomass from plant cell cultures. Korean J. Biotechnol. Bioeng. 15: 337–341.

    Google Scholar 

  12. Kim, G. J. and J. H. Kim (2015) A simultaneous microwave-assisted extraction and adsorbent treatment process under acidic conditions for recovery and separation of paclitaxel from plant cell cultures. Korean J. Chem. Eng. 32: 1023–1028.

    Article  CAS  Google Scholar 

  13. Kang, H. J. and J. H. Kim (2020) Removal of residual toluene and methyl tertiary butyl ether from amorphous paclitaxel by simple rotary evaporation with alcohol pretreatment. Biotechnol. Bioprocess Eng. 25: 86–93.

    Article  CAS  Google Scholar 

  14. Kang, H. J. and J. H. Kim (2019) Removal of residual chloroform from amorphous paclitaxel pretreated by alcohol. Korean J. Chem. Eng. 36: 1965–1970.

    Article  CAS  Google Scholar 

  15. Yoo, K. W. and J. H. Kim (2018) Kinetics and mechanism of ultrasound-assisted extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 23: 532–540.

    Article  CAS  Google Scholar 

  16. Kim, J. H. (2020) Comparison of conventional solvent extraction, microwave-assisted extraction, and ultrasound-assisted extraction methods for paclitaxel recovery from biomass. Korean Chem. Eng. Res. 58: 273–279.

    CAS  Google Scholar 

  17. Salarbashia, D., B. S. Fazly Bazzazb, M. M. Karimkhani, Z. Sabeti Noghabi, F. Khanzadeh, and A. Sahebkar (2014) Oil stability index and biological activities of Achillea biebersteinii and Achillea wilhelmsii extracts as influenced by various ultrasound intensities. Ind. Crops Prod. 55: 163–172.

    Article  Google Scholar 

  18. Li, C., Z. Lu, C. Zhao, L. Yang, Y. Fu, K. Shi, X. He, Z. Li, and Y. Zu (2015) Ionic-liquid-based ultrasound/microwave-assisted extraction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one and 6-methoxy-benzoxazolin-2-one from maize (Zea mays L.) seedlings. J. Sep. Sci. 38: 291–300.

    Article  CAS  Google Scholar 

  19. Pongmalai, P., S. Devahastin, N. Chiewchan, and S. Soponronnarit (2015) Enhancement of microwave-assisted extraction of bioactive compounds from cabbage outer leaves via the application of ultrasonic pretreatment. Sep. Purif. Technol. 144: 37–45.

    Article  CAS  Google Scholar 

  20. Soria, A. C. and M. Villamiel (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci. Technol. 21: 323–331.

    Article  CAS  Google Scholar 

  21. Hyun, J. E. and J. H. Kim (2008) Microwave-assisted extraction of paclitaxel from plant cell cultures. Korean J. Biotechnol. Bioeng. 23: 281–284.

    Google Scholar 

  22. Kang, H. J. and J. H. Kim (2019) Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of Taxus chinensis cell cultures onto Sylopute. Biotechnol. Bioprocess Eng. 24: 513–521.

    Article  CAS  Google Scholar 

  23. Langergren, S. and B. K. Svenska (1898) Zur theoie der sogenannten adsorption geloester stoffe. Veter. Hand 24: 1–39.

    Google Scholar 

  24. Rakotondramasy-Rabesiaka, L., J. L. Havet, C. Porte, and H. Fauduet (2007) Solid-liquid extraction of protopine from Fumaria officinalis L.-Analysis determination, kinetic reaction and model building. Sep. Purif. Technol. 54: 253–261.

    Article  CAS  Google Scholar 

  25. Ho, Y. S., H. A. Harouna-Oumarou, H. Fauduet, and C. Porte (2005) Kinetics and model building of leaching of water-soluble compounds of Tilia sapwood. Sep. Purif. Technol. 45: 169–173.

    Article  CAS  Google Scholar 

  26. Weber, W. J. and J. C. Morris (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89: 31–59.

    Article  Google Scholar 

  27. Krishnan, R. Y. and K. S. Rajan (2016) Microwave assisted extraction of flavonoids from Terminalia bellerica: Study of kinetics and thermodynamics. Sep. Purif. Technol. 157: 169–178.

    Article  Google Scholar 

  28. Krishnan, R. Y., M. N. Chandran, V. Vadivel, and K. S. Fajan (2016) Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Sep. Purif. Technol. 170: 224–233.

    Article  Google Scholar 

  29. Rakotondramasy-Rabesiaka, L., J. L. Havet, C. Porte, and H. Fauduet (2010) Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Sep. Purif. Technol. 76: 126–131.

    Article  CAS  Google Scholar 

  30. Panda, D. and S. Manickam (2019) Cavitation technology-The future of greener extraction method: A review on the extraction of natural products and process intensification mechanism and perspectives. Appl. Sci. 9: 766–786.

    Article  CAS  Google Scholar 

  31. Li, S., A. Wang, L. Liu, G. Tian, and F. Xu (2019) Extraction of polysaccharides under vacuum condition from Lentinus edodes stipe and their antioxidant activities in vitro. Food Sci. Biotechnol. 28: 759–767.

    Article  CAS  Google Scholar 

  32. Johansson, Ö., T. Pamidi, and V. Shankar (2021) Extraction of tungsten from scheelite using hydrodynamic and acoustic cavitation. Ultrason. Sonochem. 71: 105408.

    Article  CAS  Google Scholar 

  33. Kavitha, D. and C. Namasivayam (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour. Technol. 98: 14–21.

    Article  CAS  Google Scholar 

  34. Ji, J., X. Lu, M. Cai, and Z. Xu (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason. Sonochem. 13: 455–462.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Number: 2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Ethics declarations

The authors declare no competing of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, HS., Kim, JH. Study of the Extraction Kinetics and Calculation of Effective Diffusivity and Mass Transfer Coefficient in Negative Pressure Cavitation Extraction of Paclitaxel from Taxus chinensis. Biotechnol Bioproc E 27, 111–118 (2022). https://doi.org/10.1007/s12257-021-0311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0311-y

Keywords

Navigation