Skip to main content
Log in

Growth-promoting Effect of Alginate Oligosaccharides on Rhodobacter sphaeroides

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Rhodobacter sphaeroides has been well-known for its strong contribution to environment, medicine, food, and cosmetic industry. Here, we first reported the growth-promoting effects of an alginate oligosaccharide mixture (AOS) on R. sphaeroides. AOS exhibited a stimulatory effect on the growth of R. sphaeroides in a dose-dependent manner. The highest growth rate of R. sphaeroides was obtained in LB medium supplemented with 0.5% AOS. AOS exerted a selective growth-promoting effect on R. sphaeroides but not on Escherichia coli, Lysinibacillus xylanilyticus, and Pantoea rwandensis. The growth-promoting effect of AOS is influenced by light and may be involved in the up-regulation of fbp2, RSP-0557, and RegB genes. Our results collectively suggested that AOS should be employed as a growth-promoting factor to enhance the transition of R. sphaeroides to industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mackenzie, C., M. Choudhary, F. W. Larimer, P. F. Prdki, S. Stilwagen, J. P. Armitage, R. D. Barber, T. J. Donohue, J. P. Hosler, J. E. Newman, J. P. Shapleigh, R. E. Sockett, J. Zeilstra-Ryalls, and S. Kaplan (2001) The home stretch, a first analysis of the nearly completed genome of Rhodobacter sphaeroides 2.4.1. Photosynth. Res. 70: 19–41.

    Article  CAS  PubMed  Google Scholar 

  2. Mackenzie, C., J. M. Eraso, M. Choudhary, J. H. Roh, X. Zeng, P. Bruscella, Á. Puskás, and S. Kaplan (2007) Postgenomic adventures with Rhodobacter sphaeroides. Annu. Rev. Microbiol. 61: 283–307.

    Article  CAS  PubMed  Google Scholar 

  3. McEwan, A. G. (1994) Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek. 66: 151–164.

    Article  CAS  PubMed  Google Scholar 

  4. Zeilstra-Ryalls, J., M. Gomelsky, J. M. Eraso, A. Yeliseev, J. O’Gara, and S. Kaplan (1998) Control of photosystem formation in Rhodobacter sphaeroides. J. Bacteriol. 180: 2801–2809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryu, M. H., N. C. Hull, and M. Gomelsky (2014) Metabolic engineering of Rhodobacter sphaeroides for improved hydrogen production. Int. J. Hydrogen Energy. 39: 6384–6390.

    Article  CAS  Google Scholar 

  6. Shimizu, T., H. Teramoto, and M. Inui (2019) Engineering the transcriptional activator NifA for the construction of Rhodobacter sphaeroides strains that produce hydrogen gas constitutively. Appl. Microbiol. Biotechnol. 103: 9739–9749.

    Article  CAS  PubMed  Google Scholar 

  7. Mougiakos, I., E. Orsi, M. R. Ghiffary, W. Post, A. De Maria, B. Adiego-Perez, S. W. M. Kengen, R. A. Weusthuis, and J. Van Der Oost (2019) Efficient Cas9-based genome editing of Rhodobacter sphaeroides for metabolic engineering. Microb. Cell Fact. 18: 204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McIntosh, M., K. Eisenhardt, B. Remes, A. Konzer, and G. Klug (2019) Adaptation of the Alphaproteobacterium Rhodobacter sphaeroides to stationary phase. Environ. Microbiol. 21: 4425–4445.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, N. Y., T. B. Yim, and H. Y. Lee (2015) Skin anti-aging activities of bacteriochlorophyll a from photosynthetic bacteria, Rhodobacter sphaeroides. J. Microbiol. Biotechnol. 25: 1589–1598.

    Article  CAS  PubMed  Google Scholar 

  10. Orsi, E., P. L. Folch, V. T. Monje-López, B. M. Fernhout, A. Turcato, S. W. M. Kengen, G. Eggink, and R. A. Weusthuis (2019) Characterization of heterotrophic growth and sesquiterpene production by Rhodobacter sphaeroides on a defined medium. J. Ind. Microbiol. Biotechnol. 46: 1179–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, X., H. Shi, Y. Wang, S. Zhang, J. Chu, M. Zhang, M. Huang, and Y. Zhuang (2011) Effects of vitamins (nicotinic acid, vitamin B1 and biotin) on phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5. Int. J. Hydrogen Energy. 36: 9620–9625.

    Article  CAS  Google Scholar 

  12. Fang, H., J. Kang, and D. Zhang (2017) Microbial production of vitamin B12: A review and future perspectives. Microb. Cell Fact. 16: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wu, W. T. and W. S. Liu (2011) Anti-inflammatory property of biomaterial carotenoids production by Rhodobacter sphaeroides WL-APD911. Adv. Mat. Res. 287–290: 2028–2031.

    Google Scholar 

  14. Yang, H. S., K. H. Leung, and M. C. Archer (1976) Preparation and properties of bacterial chromatophores entrapped in polyacrylamide. Biotechnol. Bioeng. 18: 1425–1432.

    Article  CAS  PubMed  Google Scholar 

  15. Li, Z., L. Kong, B. Hui, X. Shang, L. Gao, N. Luan, X. Zhuang, D. Wang, and Z. Bai (2017) Identification and antioxidant activity of carotenoids from superfine powder of Rhodobacter sphaeroides. Emir. J. Food Agric. 29: 833–845.

    Article  Google Scholar 

  16. Su, A., S. Chi, Y. Li, S. Tan, S. Qiang, Z. Chen, and Y. Meng (2018) Metabolic redesign of Rhodobacter sphaeroides for lycopene production. J. Agric. Food Chem. 66: 5879–5885.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, C. T., Y. Y. Wang, W. S. Liu, C. M. Cheng, K. H. Chiu, L. L. Liu, X. Z. Liu, Z. H. Wen, Y. H. Chen, and T. M. Chen (2018) Rhodobacter sphaeroides extract Lycogen™ attenuates testosterone-induced benign prostate hyperplasia in rats. Int. J. Mol. Sci. 19: 1137.

    Article  PubMed Central  Google Scholar 

  18. Wang, C. C., S. Y. Huang, S. H. Huang, Z. H. Wen, J. Y. Huang, W. S. Liu, and H. M. D. Wang (2017) A synthetic biological secondary metabolite, Lycogen™, produced and extracted from Rhodobacter sphaeroides WL-APD911 in an optimizatioal scale-up strategy. Food Sci. Hum. Wellness. 6: 195–201.

    Article  Google Scholar 

  19. Yen, H. W., C. Y. Feng, and J. L. Kang (2010) Cultivation of Rhodobacter sphaeroides in the stirred bioreactor with different feeding strategies for CoQ10 production. Appl. Biochem. Biotechnol. 160: 1441–1449.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X., X. Jiang, M. Xu, M. Zhang, R. Huang, J. Huang, and F. Qi (2019) Co-production of farnesol and coenzyme Q10 from metabolically engineered Rhodobacter sphaeroides. Microb. Cell Fact. 18: 98.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ranjith, N. K., C. Sasikala, and C. V. Ramana (2007) Rhodethrin: A novel indole terpenoid ether produced by Rhodobacter sphaeroides has cytotoxic and phytohormonal activities. Biotechnol. Lett. 29: 1399–1402.

    Article  CAS  PubMed  Google Scholar 

  22. Knaff, D. B. (1996) Anoxygenic photosynthetic bacteria. Photosynth. Res. 47: 199–200.

    Article  CAS  Google Scholar 

  23. Volpicella, M., A. Costanza, O. Palumbo, F. Italiano, L. Claudia, A. Placido, E. Picardi, M. Carella, M. Trotta, and L. R. Ceci (2014) Rhodobacter sphaeroides adaptation to high concentrations of cobalt ions requires energetic metabolism changes. FEMS Microbiol. Ecol. 88: 345–357.

    Article  CAS  PubMed  Google Scholar 

  24. Park, R. M., N. H. T. Nguyen, S. M. Lee, Y. H. Kim, and J. Min (2021) Alginate oligosaccharides can maintain activities of lysosomes under low pH condition. Sci. Rep. 11: 11504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurachi, M., T. Nakashima, C. Miyajima, Y. Iwamoto, T. Muramatsu, K. Yamaguchi, and T. Oda (2005) Comparison of the activities of various alginates to induce TNF-α secretion in RAW264.7 cells. J. Infect. Chemother. 11: 199–203.

    Article  CAS  PubMed  Google Scholar 

  26. Fang, W., D. Bi, R. Zheng, N. Cai, H. Xu, R. Zhou, J. Lu, M. Wan, and X. Xu (2017) Identification and activation of TLR4-mediated signalling pathways by alginate-derived guluronate oligosaccharide in RAW264.7 macrophages. Sci. Rep. 7: 1663.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jack, A. A., S. Khan, L. C. Powell, M. F. Pritchard, K. Beck, H. Sadh, L. Sutton, A. Cavaliere, H. Florance, P. D. Rye, D. W. Thomas, and K. E. Hill (2018) Alginate oligosaccharide-induced modification of the lasI-lasR and rhlI-rhlR quorum-sensing systems in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 62: e02318–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhu, Y., L. Wu, Y. Chen, H. Ni, A. Xiao, and H. Cai (2016) Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates. Microbiol. Res. 182: 49–58.

    Article  CAS  PubMed  Google Scholar 

  29. Han, Y., L. Zhang, X. Yu, S. Wang, C. Xu, H. Yin, and S. Wang (2019) Alginate oligosaccharide attenuates α2,6-sialylation modification to inhibit prostate cancer cell growth via the Hippo/YAP pathway. Cell Death Dis. 10: 374.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Han, Z. L., M. Yang, X. D. Fu, M. Chen, Q. Su, Y. H. Zhao, and H. J. Mou (2019) Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis. Mar. Drugs. 17: 173.

    Article  CAS  PubMed Central  Google Scholar 

  31. Hao, J., C. Hao, L. Zhang, X. Liu, X. Zhou, Y. Dun, H. Li, G. Li, X. Zhao, Y. An, J. Liu, and G. Yu (2015) OM2, a novel oligomannuronate-chromium(III) complex, promotes mitochondrial biogenesis and lipid metabolism in 3T3-L1 adipocytes via the AMPK-PGC1α pathway. PLoS One. 10: e0131930.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, M., L. Chen, and Z. Zhang (2021) Potential applications of alginate oligosaccharides for biomedicine — A mini review. Carbohydr. Polym. 271: 118408.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, M., Z. Lu, F. Li, F. Shi, F. Zhan, Y. Zhang, L. Zhao, Y. Li, J. Li, L. Lin, and Z. Qin (2021) Alginate oligosaccharide improves fat metabolism and antioxidant capacity in the liver of grass carp (Ctenopharyngodon idellus). Aquaculture. 540: 736664.

    Article  CAS  Google Scholar 

  34. Liu, J., S. Yang, X. Li, Q. Yan, M. J. T. Reaney, and Z. Jiang (2019) Alginate oligosaccharides: Production, biological activities, and potential applications. Compr. Rev. Food Sci. Food Saf. 18: 1859–1881.

    Article  CAS  PubMed  Google Scholar 

  35. Yokose, T., T. Nishikawa, Y. Yamamoto, Y. Yamasaki, K. Yamaguchi, and T. Oda (2009) Growth-promoting effect of alginate oligosaccharides on a unicellular marine microalga, nannochloropsis oculata. Biosci. Biotechnol. Biochem. 73: 450–453.

    Article  CAS  PubMed  Google Scholar 

  36. Yang, C., N. Luan, J. An, M. Zhang, Z. Li, Q. Li, Y. Ling, X. Niu, Z. Bai, and W. Xu (2020) The effects of Rhodobacter sphaeroides on the composition of gut microbiota and short-chain fatty acids in mice. 8: 288–296.

  37. Wan, J., J. Zhang, D. Chen, B. Yu, and J. He (2017) Effects of alginate oligosaccharide on the growth performance, antioxidant capacity and intestinal digestion-absorption function in weaned pigs. Anim. Feed Sci. Technol. 234: 118–127.

    Article  CAS  Google Scholar 

  38. Pappas, C. T., J. Sram, O. V. Moskvin, P. S. Ivanov, R. C. Mackenzie, M. Choudhary, M. L. Land, F. W. Larimer, S. Kaplan, and M. Gomelsky (2004) Construction and validation of the Rhodobacter sphaeroides 2.4.1 DNA microarray: Transcriptome flexibility at diverse growth modes. J. Bacteriol. 186: 4748–4758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elsen, S., L. R. Swem, D. L. Swem, and C. E. Bauer (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol. Mol. Biol. Rev. 68: 263–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sargsyan, H., L. Gabrielyan, L. Hakobyan, and A. Trchounian (2015) Light-dark duration alternation effects on Rhodobacter sphaeroides growth, membrane properties and bio-hydrogen production in batch culture. Int. J. Hydrogen Energy. 40: 4084–4091.

    Article  CAS  Google Scholar 

  41. Kondo, K., N. Nakata, and E. Nishihara (2004) Effect of purple nonsulfur bacteria (Rhodobacter sphaeroides) on the growth and quality of Komatsuna under different light qualities. Environ. Control Biol. 42: 247–253.

    Article  Google Scholar 

  42. Callister, S. J., C. D. Nicora, X. Zeng, J. H. Roh, M. A. Dominguez, C. L. Tavano, M. E. Monroe, S. Kaplan, T. J. Donohue, R. D. Smith, and M. S. Lipton (2006) Comparison of aerobic and photosynthetic Rhodobacter sphaeroides 2.4.1 proteomes. J. Microbiol. Methods. 67: 424–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is carried out with the support of the Cooperative Research Program for Agriculture Science and Technology Development [Project No. PJ014972], Rural Development Administration, Republic of Korea. This paper was also supported by research funds from Jeonbuk National University in 2020. We would like to thank the Research Institute of Bioindustry at Jeonbuk National University for kindly providing the facilities for this research study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Moon Park.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, N.T.M., Le, V.V., Shin, D. et al. Growth-promoting Effect of Alginate Oligosaccharides on Rhodobacter sphaeroides. Biotechnol Bioproc E 27, 99–104 (2022). https://doi.org/10.1007/s12257-021-0246-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0246-3

Keywords

Navigation