Skip to main content
Log in

Evaluation of Growth and Utilization Potential of Rhodobacter sphaeroides in Reused Medium

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Rhodobacter sphaeroides is a metabolically versatile purple non-sulfur bacteria that can produce valuable substances. As the low-cost and high-efficiency production of valuable substances is attracting attention, the reuse of the medium is emerging as a promising strategy. Therefore, in this study, the growth of R. sphaeroides was evaluated by reusing the medium of Escherichia coli and Saccharomyces cerevisiae. As a result, in the reuse of the medium in which S. cerevisiae was cultured, sufficient growth of R. sphaeroides could be confirmed, and especially, the growth of R. sphaeroides was not inhibited under aerobic conditions. Therefore, it is considered that the strategy of reusing the medium of S. cerevisiae is sufficiently feasible. Of the organic compounds investigated, R. sphaeroides grew best in succinic acid, followed by malic acid, citric acid, acetic acid, and glucose. In addition, by comparing photopigment synthesis in the reused medium, we propose the hypothesis that succinic acid may play an important role in photopigment synthesis for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yu, J., Moon, S.-K., Kim, Y.-H., & Min, J. (2022). Isoprene production by Rhodobacter sphaeroides and its antimicrobial activity. Research in Microbiology, 103938.

  2. Deguchi, T., Ezaki, T., Sato, M., & Kobayashi, M. (2022). Properties of antioxidants produced by Rhodobacter sphaeroides. African Journal of Biochemistry Research, 16, 32–38.

    Google Scholar 

  3. Lee, Y. R., Lee, W.-H., Lee, S. Y., Lee, J., Kim, M.-S., Moon, M., Park, G. W., Kim, H. S., Kim, J.-I., & Lee, J.-S. (2022). Regulation of reactive oxygen species promotes growth and carotenoid production under autotrophic conditions in Rhodobacter sphaeroides. Frontiers in Microbiol, 548.

  4. Lee, H. J., Park, J.-Y., Han, C.-H., Chang, S.-T., Kim, Y.-H., & Min, J. (2011). Blue LED and succinic acid enhance the growth of Rhodobacter sphaeroides. World Journal of Microbiology & Biotechnology, 27, 189–192.

    Article  CAS  Google Scholar 

  5. Assawamongkholsiri, T., & Reungsang, A. (2015). Photo-fermentational hydrogen production of Rhodobacter sp. KKU-PS1 isolated from an UASB reactor. Electronic Journal of Biotechnology, 18, 221–230.

    Article  Google Scholar 

  6. Lee, Y. R., Fitriana, H. N., Lee, S. Y., Kim, M.-S., Moon, M., Lee, W.-H., Lee, J.-S., & Lee, S. (2020). Molecular profiling and optimization studies for growth and PHB production conditions in Rhodobacter sphaeroides. Energies, 13, 6471.

    Article  CAS  Google Scholar 

  7. Li, Y., Zhang, Z., Duan, Y., & Wang, H. (2019). The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism. Bioresource Technology, 280, 188–198.

    Article  CAS  PubMed  Google Scholar 

  8. Kögler, M., Itkonen, J., Viitala, T., & Casteleijn, M. G. (2020). Assessment of recombinant protein production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS). Science and Reports, 10, 1–11.

    Google Scholar 

  9. Parapouli, M., Vasileiadis, A., Afendra, A.-S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol, 6, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, S. Y., Kim, Y. S., Shin, W.-R., Yu, J., Lee, J., Lee, S., Kim, Y.-H., & Min, J. (2020). Non-photosynthetic CO2 bio-mitigation by Escherichia coli harbouring CBB genes. Green Chemistry, 22, 6889–6896.

    Article  CAS  Google Scholar 

  11. Gu, Z., Deming, C., Yongbin, H., Zhigang, C., & Feirong, G. (2008). Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT-Food Science Technology, 41, 1082–1088.

    Article  CAS  Google Scholar 

  12. Cohen-Bazire, G., Sistrom, W., & Stanier, R. (1957). Kinetic studies of pigment synthesis by non-sulfur purple bacteria. Journal of Cellular Physiology, 49, 25–68.

    Article  CAS  Google Scholar 

  13. Fuhrer, T., Fischer, E., & Sauer, U. (2005). Experimental identification and quantification of glucose metabolism in seven bacterial species. Journal of Bacteriology, 187, 1581–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, J., & Nie, Q. (2016). Engineering Escherichia coli to convert acetic acid to β-caryophyllene. Microbial Cell Factories, 15, 1–9.

    Article  Google Scholar 

  15. Zelle, R. M., De Hulster, E., Van Winden, W. A., De Waard, P., Dijkema, C., Winkler, A. A., Geertman, J.-M.A., Van Dijken, J. P., Pronk, J. T., & Van Maris, A. J. (2008). Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Applied and Environment Microbiology, 74, 2766–2777.

    Article  CAS  Google Scholar 

  16. Börekçi, B. S., Kaban, G., & Kaya, M. (2021). Citric acid production of yeasts: an overview. Eurobiotech Journal, 5, 79–91.

    Article  Google Scholar 

  17. Shu, C.-H. (2007). Fungal fermentation for medicinal products. Bioprocessing for value-added products from renewable resources (pp. 447–463). Elsevier.

    Chapter  Google Scholar 

  18. Zhou, W., Lu, Q., Han, P., & Li, J. (2020). Microalgae cultivation and photobioreactor design. Microalgae cultivation for biofuels production (pp. 31–50). Elsevier.

    Chapter  Google Scholar 

  19. Hamad, S. H. (2012) 20 factors affecting the growth of microorganisms in food. Journal of Food Processing and Preservation, 405.

  20. Tsukatani, Y., Harada, J., Nomata, J., Yamamoto, H., Fujita, Y., Mizoguchi, T., & Tamiaki, H. (2015). Rhodobacter sphaeroides mutants overexpressing chlorophyllide a oxidoreductase of Blastochloris viridis elucidate functions of enzymes in late bacteriochlorophyll biosynthetic pathways. Science and Reports, 5, 1–8.

    Google Scholar 

  21. Ng, I. W., Adams, P. G., Mothersole, D. J., Vasilev, C., Martin, E. C., Lang, H. P., Tucker, J. D., & Hunter, C. N. (2011). Carotenoids are essential for normal levels of dimerisation of the RC–LH1–PufX core complex of Rhodobacter sphaeroides: characterisation of R-26 as a crtB (phytoene synthase) mutant. Biochimica et Biophysica Acta - Bioenergetics, 1807, 1056–1063.

    Article  CAS  Google Scholar 

  22. Wu, H. (2016). Effect of different light qualities on growth, pigment content, chlorophyll fluorescence, and antioxidant enzyme activity in the red alga Pyropia haitanensis (Bangiales, Rhodophyta). BioMed Research International

  23. Masuda, S., Berleman, J., Hasselbring, B. M., & Bauer, C. E. (2008). Regulation of aerobic photosystem synthesis in the purple bacterium Rhodospirillum centenum by CrtJ and AerR. Photochemical & Photobiological Sciences, 7, 1267–1272.

    Article  CAS  Google Scholar 

  24. Sarian, F. D., Rahman, D. Y., Schepers, O., & van der Maarel, M. J. E. C. (2016). Effects of oxygen limitation on the biosynthesis of photo pigments in the red microalgae Galdieria sulphuraria strain 074G. PLoS ONE, 11, e0148358.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sistrom, W. (1960). A requirement for sodium in the growth of Rhodopseudomonas spheroides. Microbiology, 22, 778–785.

    CAS  Google Scholar 

  26. Kundu, B. (1986). Biochemical and bioenergetic aspects of denitrification in Rhodopseudomonas sphaeroidesforma sp.denitrificans, Diss.

  27. Fitriana, H. N., Lee, S., Kim, H. S., Lee, J., Lee, Y., Lee, J.-S., Park, H., Ko, C. H., Lim, S. Y., & Lee, S. Y. (2022). Enhanced CO2 electroconversion of Rhodobacter sphaeroides by cobalt-phosphate complex assisted water oxidation. Bioelectrochemistry, 145, 108102.

    Article  CAS  PubMed  Google Scholar 

  28. Kars, G., Demirel Kars, M., Obali, İ, Emsen, A., & Gündüz, U. (2020). Investigation of antioxidant and cytotoxic effects of biotechnologically produced carotenoids from Rhodobacter sphaeroides OU 001. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10, 559–568.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2021R1A2C2093580).

Funding

Funding was provided by National Research Foundation of Korea (NRF) (Grant No. 2021R1A2C2093580).

Author information

Authors and Affiliations

Authors

Contributions

JY: Conceptualization, data curation, formal analysis, investigation, validation, writing—original draft, writing—review and editing. JYP: Data curation, formal analysis, investigation, methodology. YHK: Conceptualization, project administration, supervision. JM: Conceptualization, funding acquisition, methodology, project administration, supervision, writing—review and editing.

Corresponding authors

Correspondence to Yang-Hoon Kim or Jiho Min.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Park, JY., Kim, YH. et al. Evaluation of Growth and Utilization Potential of Rhodobacter sphaeroides in Reused Medium. Mol Biotechnol 65, 441–445 (2023). https://doi.org/10.1007/s12033-022-00553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-022-00553-6

Keywords

Navigation