Skip to main content
Log in

CircBRMS1L Participates in Lipopolysaccharide-induced Chondrocyte Injury via the TLR4/NF-κB Pathway through Serving as a miR-142-5p Decoy

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is the main cause of pain and disability in the elderly. It is reported that circular RNA BRMS1L (BRMS1 like transcriptional repressor) (circBRMS1L) is upregulated in the synovial fluid of OA patients. Nevertheless, the biological function of circBRMS1L in OA has not been validated. Lipopolysaccharide (LPS)-induced chondrocytes (C28/I2) were used as OA cell models in vitro. Expression patterns of circBRMS1L, microRNA (miR)-142-5p, and Toll-like Receptor 4 (TLR4) mRNA were verified by quantitative real-time polymerase chain reaction. Loss-of-function experiments were performed to explore the influence of circBRMS1L on LPS-induced extracellular matrix (ECM) degradation, apoptosis, and inflammation in C28/I2 cells. Protein levels were detected by western blotting. The regulatory mechanism of circBRMS1L in OA was explored by bioinformatics analysis, dual-luciferase reporter, RNA immunoprecipitation, and/or RNA pull-down assays. CircBRMS1L was prominently upregulated in OA cartilage tissues and LPS-stimulated C28/I2 cells. Inhibition of circBRMS1L reduced LPS-induced ECM degradation, apoptosis, inflammation, and oxidative stress in C28/I2 cells. MiR-142-5p was downregulated while TLR4 was upregulated in OA cartilage tissues and LPS-stimulated C28/I2 cells. CircBRMS1L adsorbed miR-142-5p to regulate TLR4 expression. MiR-142-5p inhibitor reversed circBRMS1L silencing-mediated effects on LPS-induced ECM degradation, apoptosis, inflammation, and oxidative stress in C28/I2 cells. TLR4 elevation overturned the inhibitory influence of miR-142-5p mimic on LPS-induced ECM degradation, apoptosis, inflammation, and oxidative stress in C28/I2 cells. Notably, circBRMS1L activated the nuclear factor-κB (NF-κB) pathway by the miR-142-5p/TLR4 axis. LPS-induced ECM degradation, apoptosis, inflammation, and oxidative stress in chondrocytes were at least partially regulated by the circBRMS1L/miR-142-5p/TLR4/NF-κB pathway, highlighting a new mechanism responsible for OA advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffries, M. A. (2019) Osteoarthritis year in review 2018: genetics and epigenetics. Osteoarthritis Cartilage 27: 371–377.

    Article  CAS  PubMed  Google Scholar 

  2. Kraus, V. B., F. J. Blanco, M. Englund, M. A. Karsdal, and L. S. Lohmander (2015) Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 23: 1233–1241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bruyère, O., G. Honvo, N. Veronese, N. K. Arden, J. Branco, E. M. Curtis, N. M. Al-Daghri, G. Herrero-Beaumont, J. Martel-Pelletier, J.-P. Pelletier, F. Rannou, R. Rizzoli, R. Roth, D. Uebelhart, C. Cooper, and J.-Y. Reginster (2019) An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Semin. Arthritis Rheum. 49: 337–350.

    Article  PubMed  Google Scholar 

  4. Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J.-P. Pelletier, and H. Fahmi (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7: 33–42.

    Article  CAS  PubMed  Google Scholar 

  5. Goldring, M. B. and M. Otero (2011) Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 23: 471–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ansari, M. Y., N. Ahmad, and T. M. Haqqi (2020) Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols. Biomed. Pharmacother. 129: 110452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hwang, H. S. and H. A. Kim (2015) Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16: 26035–26054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Charlier, E., B. Relic, C. Deroyer, O. Malaise, S. Neuville, J. Collée, M. G. Malaise, and D. De Seny (2016) Insights on molecular mechanisms of chondrocytes death in osteoarthritis. Int. J. Mol. Sci. 17: 2146.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, F. S., C. W. Kuo, J. Y. Ko, Y. S. Chen, S. Y. Wang, H. J. Ke, P. C. Kuo, C. H. Lee, J. C. Wu, W. B. Lu, M. H. Tai, H. Jahr, and W. S. Lian (2020) Irisin mitigates oxidative stress, chondrocyte dysfunction and osteoarthritis development through regulating mitochondrial integrity and autophagy. Antioxidants (Basel) 9: 810.

    Article  CAS  PubMed  Google Scholar 

  10. Chen, L.-L. and L. Yang (2015) Regulation of circRNA biogenesis. RNA Biol. 12: 381–388.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Suzuki, H. and T. Tsukahara (2014) A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 15: 9331–9342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Q., X. Zhang, X. Hu, L. Yuan, J. Cheng, Y. Jiang, and Y. Ao (2017) Emerging roles of circRNA related to the mechanical stress in human cartilage degradation of osteoarthritis. Mol. Ther. Nucleic Acids 7: 223–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li, H.-Z., Z. Lin, X.-H. Xu, N. Lin, and H.-D. Lu (2018) The potential roles of circRNAs in osteoarthritis: a coming journey to find a treasure. Biosci. Rep. 38: BSR20180542.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang, Z., T. Yang, and J. Xiao (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34: 267–274.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shen, S., Y. Wu, J. Chen, Z. Xie, K. Huang, G. Wang, Y. Yang, W. Ni, Z. Chen, P. Shi, Y. Ma, and S. Fan (2019) CircSERPINE2 protects against osteoarthritis by targeting miR-1271 and ETS-related gene. Ann. Rheum. Dis. 78: 826–836.

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Y., Y. Zhang, Y. Zhang, and J.-J. Wang (2017) CircRNA hsa_circ_0005105 upregulates NAMPT expression and promotes chondrocyte extracellular matrix degradation by sponging miR-26a. Cell Biol. Int. 41: 1283–1289.

    Article  PubMed  Google Scholar 

  17. Yu, F., C. Xie, J. Sun, H. Feng, and X. Huang (2018) Circular RNA expression profiles in synovial fluid: a promising new class of diagnostic biomarkers for osteoarthritis. Int. J. Clin. Exp. Pathol. 11: 1338–1346.

    PubMed  PubMed Central  Google Scholar 

  18. Tay, Y., J. Rinn, and P. P. Pandolfi (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505: 344–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, S., Z. Jin, and X. Lu (2017) MicroRNA-192 suppresses cell proliferation and induces apoptosis in human rheumatoid arthritis fibroblast-like synoviocytes by downregulating caveolin 1. Mol. Cell. Biochem. 432: 123–130.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao, P., X. Zhu, J. Sun, Y. Zhang, W. Qiu, J. Li, and X. Wu (2021) LncRNA NEAT1 regulates chondrocyte proliferation and apoptosis via targeting miR-543/PLA2G4A axis. Hum. Cell 34: 60–75.

    Article  CAS  PubMed  Google Scholar 

  21. Fan, X., J. Yuan, J. Xie, Z. Pan, X. Yao, X. Sun, P. Zhang, and L. Zhang (2018) Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochem. Biophys. Res. Commun. 500: 658–664.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, T., Z. Hao, C. Liu, L. Yuan, L. Li, M. Yin, Q. Li, Z. Qi, and Z. Wang (2020) LEF1 mediates osteoarthritis progression through circRNF121/miR-665/MYD88 axis via NF-κB signaling pathway. Cell Death Dis. 11: 598. (Erratum published 2020, Cell Death Dis. 11: 689)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cao, J., Z. Liu, L. Zhang, and J. Li (2019) miR-940 regulates the inflammatory response of chondrocytes by targeting MyD88 in osteoarthritis. Mol. Cell. Biochem. 461: 183–193.

    Article  CAS  PubMed  Google Scholar 

  24. Xiang, Y., Y. Li, L. Yang, Y. He, D. Jia, and X. Hu (2020) miR-142-5p as a CXCR4-targeted microRNA attenuates SDF-1-induced chondrocyte apoptosis and cartilage degradation via inactivating MAPK signaling pathway. Biochem. Res. Int. 2020: 4508108.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roy, A., M. Srivastava, U. Saqib, D. Liu, S. M. Faisal, S. Sugathan, S. Bishnoi, and M. S. Baig (2016) Potential therapeutic targets for inflammation in toll-like receptor 4 (TLR4)-mediated signaling pathways. Int. Immunopharmacol. 40: 79–89.

    Article  CAS  PubMed  Google Scholar 

  26. Choi, M.-C., J. Jo, J. Park, H. K. Kang, and Y. Park (2019) NF-κB signaling pathways in osteoarthritic cartilage destruction. Cells 8: 734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fernández-Torres, J., Y. Zamudio-Cuevas, A. López-Reyes, D. Garrido-Rodríguez, K. Martínez-Flores, C. A. Lozada, J. F. Muñóz-Valle, E. Oregon-Romero, and G. A. Martínez-Nava (2018) Gene-gene interactions of the Wnt/β-catenin signaling pathway in knee osteoarthritis. Mol. Biol. Rep. 45: 1089–1098.

    Article  PubMed  Google Scholar 

  28. Singh, P., K. B. Marcu, M. B. Goldring, and M. Otero (2019) Phenotypic instability of chondrocytes in osteoarthritis: on a path to hypertrophy. Ann. N. Y. Acad. Sci. 1442: 17–34.

    Article  CAS  PubMed  Google Scholar 

  29. Frazer, A., R. A. Bunning, M. Thavarajah, J. M. Seid, and R. G. Russell (1994) Studies on type II collagen and aggrecan production in human articular chondrocytes in vitro and effects of transforming growth factor-beta and interleukin-1beta. Osteoarthritis Cartilage 2: 235–245.

    Article  CAS  PubMed  Google Scholar 

  30. Ding, Y., L. Wang, Q. Zhao, Z. Wu, and L. Kong (2019) MicroRNA-93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF-κB signaling pathway. Int. J. Mol. Med. 43: 779–790.

    CAS  PubMed  Google Scholar 

  31. Luo, X., J. Wang, X. Wei, S. Wang, and A. Wang (2020) Knockdown of lncRNA MFI2-AS1 inhibits lipopolysaccharide-induced osteoarthritis progression by miR-130a-3p/TCF4. Life Sci. 240: 117019.

    Article  CAS  PubMed  Google Scholar 

  32. Salmena, L., L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146: 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, S., Z. Xiao, F. Ai, F. Liu, X. Chen, K. Cao, W. Ren, X. Zhang, P. Shu, and D. Zhang (2017) miR-142-5p promotes development of colorectal cancer through targeting SDHB and facilitating generation of aerobic glycolysis. Biomed. Pharmacother. 92: 1119–1127. (Erratum published 2018, Biomed. Pharmacother. 99: 1033–1036)

    Article  CAS  PubMed  Google Scholar 

  34. Bai, X., Y. Zhou, P. Chen, M. Yang, and J. Xu (2018) MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J. Cell. Biochem. 119: 2179–2188.

    Article  CAS  PubMed  Google Scholar 

  35. Li, X., W. Chen, Y. Jin, R. Xue, J. Su, Z. Mu, J. Li, and S. Jiang (2019) miR-142-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes. Biochem. Pharmacol. 161: 98–112.

    Article  CAS  PubMed  Google Scholar 

  36. Yan, J., B. Yang, S. Lin, R. Xing, and Y. Lu (2019) Downregulation of miR-142-5p promotes tumor metastasis through directly regulating CYR61 expression in gastric cancer. Gastric Cancer 22: 302–313.

    Article  CAS  PubMed  Google Scholar 

  37. Ji, Y., Q. Y. Fang, S. N. Wang, Z. W. Zhang, Z. J. Hou, J. N. Li, and S. Q. Fu (2020) Lnc-RNA BLACAT1 regulates differentiation of bone marrow stromal stem cells by targeting miR-142-5p in osteoarthritis. Eur. Rev. Med. Pharmacol. Sci. 24: 2893–2901.

    CAS  PubMed  Google Scholar 

  38. Sasaki, C. Y., T. J. Barberi, P. Ghosh, and D. L. Longo (2005) Phosphorylation of RelA/p65 on serine 536 defines an I{kappa}B{alpha}-independent NF-{kappa}B pathway. J. Biol. Chem. 280: 34538–34547.

    Article  CAS  PubMed  Google Scholar 

  39. Viatour, P., M. P. Merville, V. Bours, and A. Chariot (2005) Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43–52.

    Article  CAS  PubMed  Google Scholar 

  40. Qiu, W.-J., M.-Z. Xu, X.-D. Zhu, and Y.-H. Ji (2019) MicroRNA-27a alleviates IL-1β-induced inflammatory response and articular cartilage degradation via TLR4/NF-κB signaling pathway in articular chondrocytes. Int. Immunopharmacol. 76: 105839.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianju Li.

Ethics declarations

The authors declare that they have no conflict of interest. The research was reviewed and approved by the Ethics Committee of Xingtai People’s Hospital.

All subjects signed informed consents and then underwent surgical operations at the Xingtai People’s Hospital.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Li, L., Wang, J. et al. CircBRMS1L Participates in Lipopolysaccharide-induced Chondrocyte Injury via the TLR4/NF-κB Pathway through Serving as a miR-142-5p Decoy. Biotechnol Bioproc E 28, 112–124 (2023). https://doi.org/10.1007/s12257-021-0224-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0224-9

Keywords

Navigation